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Abstract 

One of the crucial problems in machine vision is 
reconstruction of 3D shape of objects from their images 
and the most complicated aspect of this problem is 
disparity estimation. Some techniques of disparity 
calculation in real-time monocular and binocular 
environment are presented. The developed algorithms are 
based on the correlation method of calculating 
corresponding points on images in stereo set. Performance 
optimization is achieved through some modifications of the 
correlation method, including pyramidal representation of 
the images. The method for estimating size and shape of 
the scanned region is proposed. The system was tested on a 
database of stereo-images.  

Keywords: computer vision, stereoscopic vision, 
correlation algorithm, pyramidal data representation 

1. INTRODUCTION 

Rapid evolution of computer vision systems makes it actual 
to develop effective methods of surface characteristics 
recovery from images for real-time applications. The basis 
for this recovery is disparity estimation between images of 
an object observed by a computer vision system. Here a 
method for disparity estimation based on the correlation 
algorithm is presented. This method is developed for 
application in person recognition system [2], as well as the 
modification of principal component analysis described in 
[3]. The first section presents some background overview 
of the problem and certain restrictions to the methods used. 
In the second section the general approach to the solution 
of the surface reconstruction problem using the correlation 
method is described. The next section presents the 
optimization techniques that allow taking advantage of 
specificity of the problem. The final section gives the 
example of practical application of the method and the 
results obtained. 

Various stereo surface reconstruction algorithms for 
different applications are reviewed in [5][6]. Applicability 
of any of these methods to a particular problem depends 
substantially on the equipment used, the scene geometry, 
computing resources and many other factors. Thus, of the 
great number of published works in this field only few are 
applicable to the problem of reconstructing complicated 
surface from low-contrast images. Stereo-reconstruction 
methods can be classified firstly by the number of source 
images used (i.e. points in space-time from which the 

registration is performed). Thus, these methods can be 
divided into monocular [7], binocular [8][9][10] and multi-
ocular [11]. Secondly, they can be classified by the 
approach to surface reconstruction as those defining 
surface local slopes using brightness modulation, those 
using texture and combined ones. The algorithm presented 
is binocular and performs texture-based reconstruction.  

The problem of texture-based stereo-reconstruction in 
binocular systems was formulated and treated from 
physiological point of view by Marr who modeled human 
vision. Basing on this Grimson [13] built a computing 
system and showed the efficiency of this model. Marr and 
Poggio developed the model still further by introducing the 
principle of pyramidal data representation and treatment 
[4]. Pascal Fua applied stereo-reconstruction methods to 
images of human face [12]. 

2. BASIC CONCEPTS 

For reconstructing 3-D surface a series of successive 
images of a moving object is used. The series of images is 
divided into a set of pairs. Each pair of images is treated as 
a virtual stereopair and is processed using the correlation 
algorithm to calculate disparity maps [1]. The basic 
concepts of the correlation algorithm and its peculiarities 
related with object motion are discussed here.  

The problem is to reconstruct the 3D-shape of some object 
given two images of this object obtained from different 
points of view. Here some definitions and notions of 
presented framework are introduced. Let us call left image 
L-image, right image R-image and their aggregate stereo-
pair. The points on L- and R- images representing the same 
point of a body surface are called corresponding points. 
Having imposed some frame of reference on these images, 
one can say that disparity at a point of left image is the 
measure of the distance between this point and the 
corresponding point of right image. Generally, one may 
write: 

),()),(),,((),( yxNyxDyyxDxRyxL YX +−−=  

where DX and DY are projections of disparity at point (x, y) 
of right image to OX and OY axes, L(x, y) and R(x, y) are 
left and right images and N(x, y) is a function that includes 
noise and changes in image that originate from variations 
of light and shading conditions. It is likely, that an analytic 
solution of this equation cannot be found. Thus, to 
calculate disparity one can use several numerical methods.  
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It is easy to see that given the geometry of the system (i.e. 
orientation and distance between cameras) one can use 
coordinates of correspondent points to restore the position 
of original point in 3D-space. 

In order to obtain good relief estimation, with no gaps or 
inaccurately reconstructed areas, one should use a dense 
map of correspondent points (also referred to as disparity 
map). So, the question is how to find correspondent points 
for as many points of the image as possible. The first thing 
one can think about is to treat sequentially all points of, 
say, left image and find their correspondents on right 
image. This is a correct but highly time-consuming 
procedure. So a number of optimized techniques are 
developed, which are presented in the next section. Let us 
consider the question how to find a correspondent point for 
a given one. Let us call the image, for point (x, y) of which 
a correspondent is searched, the basis image, and the 
image, on which the correspondent point is searched the 
scanned image. Some region in the scanned image, where 
correspondent point can probably be found is called the 
scanned region. Some small neighborhood of the point is 
called the correlating region. The correlating region is built 
(on the basis image) and then the most resembling one is 
sought in the scanned region of the scanned image. 
Measure of distance between regions’ centers on the basis 
image and those on the scanned image is considered to be a 
disparity in this point.  

D x y x y x y( , ) (( , ),( ' , ' ))= ρ  

Now the question is how can one measure the resemblance 
of regions i.e. what is a correlation function. The well-
known form of the correlation function is  

ℜ =
∈ ∈
∑1
1 2

( , ) ( ) * ( )
,
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But it is applicable to some stochastic models, while the 
nature of our problem is different. It is difficult to derive 
theoretically the suitable form of the correlation function. 
So several other forms of correlation functions were tested, 
for example: 

 

 

One can see that the canonical correlation function 
increases with the increase of similarity while others 
presented behave in an opposite way. But still they measure 
the similarity, if properly normalized. Now the 
correspondent point can be estimated as: 

 

where 
~
ℜ  is the normalized correlation function. Below 

ℜ  will be referred to as correlation function for short 

since 
~
ℜ  can be easily computed from . ℜ

Since the algorithm is based on comparison between 
regions of images it is reasonable to make some signal pre-
processing to facilitate this comparison and make it more 
reliable. The algorithm is texture-based so it’s easy to 
conclude that the best pre-processing would emphasize 
texture details. Methods employed for extracting local 
features of images including texture are based on local 
window operations. For this purpose an approach based on 
local equalization is chosen. It is known that equalization 
results in strengthening such space variations of signal that 
have typical scale size of nearly same magnitude as the 
equalization window. In other words the equalization 
process selects in the best way details that have nearly the 
same size as the equalization window. Thus, selecting the 
size of equalization window one can achieve a distinct 
emphasizing of cardinal details of the image. Large-scale 
variations emergent due to irradiance trend along the image 
frame are suppressed.  

3. OPTIMISATION TECHNIQUES. 

The algorithm presented is primarily developed for the case 
of motion. Since the movement of the object is quite 
arbitrary this case is much more difficult than the case of 
stereo. The computational complexity in this case is 
determined by several factors. 

1. In order to process N images we should run correlation 
algorithm for approximately N stereo pairs. 

2. Disparity can lie in both X and Y direction; so instead of 
a rectangle stretched in X direction as in the case of stereo 
the scanned region should be a square of the same linear 
size. 

3. The initial values of disparities in X and Y directions are 
unknown. 

4. The dispersion of disparity on the image can be small or 
large depending on the kind of movement of the object. For 
example, in the case of parallel transfer the dispersion is 
quite small, whereas in the case of rotation around OZ axis 
the dispersion is much higher. Thus, the problem of 
choosing the best size of the scanned region, optimal from 
the points of view of calculation time and required 
accuracy, arises. 

In order to overcome these difficulties several optimization 
techniques are proposed. 

These techniques substantially use the assumption that the 
surface of an object is sufficiently smooth and thus it 
becomes possible to use different smoothing filters and 
interpolations without considerable loss of precision. 

The image of an object can have regions with well-marked 
texture as well as those with feebly marked texture and 
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even textureless regions. That is why from the point of 
precision it would be optimal to choose combined 
algorithm, which uses texture and correlation approach in 
the regions with well-marked texture and shading in the 
regions with feebly-marked texture. But the variants of 
such algorithms available today are rather time-consuming 
and do not satisfy time constraints for real-time recognition 
systems. Oscillations of relief are little if compared to the 
distance from an object to the camera 

Now we shall enumerate the problems that led to algorithm 
restructuring. One of the substantial limitations is the run-
time of an algorithm. In order to decrease the run-time the 
pyramidal data representation and workflow are used. In 
some points due to noise or absence of texture or too 
regular texture the algorithm can fail and a wrong disparity 
value can be output. To sift out these errors the reverse 
pass of correlation algorithm and median filters are used. 
One of the critical issues is the choice of the scanned 
region. The method for its automatic choosing, based on 
the statistical analysis of data received from calculations 
performed with small number of points and small scanned 
region, is proposed. Then a method allowing to 
substantially decrease the calculation time of the 
correlation function is presented.  Finally the method for 
finding maximum of the correlation function is discussed. 

3.1 Pyramidal representation 

As it was already mentioned the system involved was 
designed to work in real-time mode. Let us consider some 
optimization steps that can be performed in the framework 
of the algorithm discussed. If the number of points in 
which the correlation search of correspondents is 
performed is denoted as N, number of points in the scanned 
region as P and the square of the correlation region as L an 
estimation will give us the following calculation 
complexity: 

LPNn **~  (1) 

where n is the number of elementary operations. So the 
problem of diminishing the calculation complexity can be 
reduced to a problem of decreasing any of these numbers 
without affecting precision of surface reconstruction. There 
is one simple and effective way of doing it. The mesh of 
points, where the correlation search of correspondents is 
performed is thinned N times, so the number of these 
points is N2 times less. (One should notice that such 
calculation is not equivalent to calculation upon an image 
lessened N times for such image transformation removes 
information about thin image texture). Then the values of 
disparity in other points are interpolated. Linear 
interpolation by nearest neighbors is feasible at moderate 
thinning (N<4). At greater thinning interpolation is made 
through constructing of smooth surface, containing known 
points of the thinned mesh. However this approach is not 
used since at great thinning the precision is lost at points 
that are not in the mesh while at low thinning the 
calculation procedure is rather time-consuming. One of the 

ways of removing this contradiction is pyramidal structure 
of data and processing. The trick is to split the processing 
into two or more similar steps (or layers). Characteristics 
relating to large fragments of images are calculated earlier 
on higher levels of pyramid and each lower level involves 
characteristics of smaller image fragments using the 
information obtained at higher levels. The system described 
employs two-level pyramid. Rough disparity that is 
calculated at high level is mainly used to lessen the scanned 
region at low level correlation search. Also the size of the 
correlation region is decreased at low level. Let us consider 
each of the two levels in details. 

High level. The mesh of points where the correlation 
search of correspondents is performed is substantially 
thinned. Since the results of this calculation are used in the 
following steps, a wrong value at one point of mesh can 
affect many points of resulting disparity. That is why both 
calculation and check (i.e. reverse pass described below) 
are performed thoroughly, which means that large 
correlation regions and large scanning areas are used. If a 
value in a point fails the reliability check the disparity is 
calculated in one of nearest points of image. This value of 
course can slightly differ from that in the required point but 
such small differences are treated at lower levels of the 
algorithm. If none of nearest points gives reliable values of 
disparity all points in the neighborhood up to other points 
of the mesh are marked as unreliable. The lower level will 
not use the information of high level at these points (i.e. the 
lower level will work as thoroughly as the higher level 
does). The substantial complexity of calculations at each 
point at high level does not significantly influence the total 
calculation cost since the number of points in the thinned 
mesh is small. After disparity in all points of the mesh is 
calculated, disparity in all other points is interpolated by a 
smooth surface. Here the assumption is used that the 
surface of the object is smooth enough so the interpolation 
surface is a good approximation of it by Chebyshov’s norm 
(i.e. there are no points in which real and interpolated 
disparity strongly differ). 

Low level. Disparity is calculated on a slightly thinned 
mesh with exception of the points that were treated at high 
level. Since some approximate value of disparity is already 
present at any point as a result of high level efforts the 
region where the corresponding point is located (the 
scanned region) can be determined more accurately, so it 
can be made smaller. Since the scanned region is 
diminished, the number of regions locally resembling the 
correlation region decreases as well, so no false 
correspondent may appear. Therefore the correlation region 
can be lessened too. In some cases (if high correlation is 
obtained) the check via reverse pass can be omitted. So 
then, with the help of the information obtained from high 
level all three multipliers in (1) are decreased. 

3.2 Checking disparities. 

Let us now concentrate on possible mistakes of the 
correlation algorithm. If a studied surface has a highly 
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regular structure several regions can be found in the 
scanned image that resemble a certain region of the basis 
image. In this case correlation function has several local 
maxima in the scanned region, and it may happen, that thy 
‘correct’ maximum is not a global one. So, a wrong match 
can be selected for a point and wrong disparity can appear. 
The other case, when correlation algorithm can generate an 
error is the absence of good texture. In this case the 
correlation function has no maximum, any point in the 
scanned region can be correspondent and disparity can 
receive any value. To suppress errors in the case of texture 
absence a simple but still rather effective technique is used. 
Some threshold is imposed on correlation function in such 
a way that if it’s value does not exceed the threshold the 
regions are considered to be completely different and are 
excluded from further treatment. It is much more difficult 
to eliminate errors in the case of highly regular structure. 
To reveal such errors the reverse pass of the correlation 
algorithm is introduced. Suppose for a given point (XL,YL) 
in L-image the correlation algorithm has found a possible 
corresponding point (XR,YR) in R-image. After this to 
ensure the perfect correspondence the reverse pass 
technique is applied, which is: just the same correlation 
algorithm treating R-image as the basis and L-image as the 
scanned image. If this procedure finds that the 
correspondent for (XR,YR) is the initial point (XL,YL), the 
correspondence is considered perfect. Otherwise the point 
(XL,YL) is marked as having unrecognized disparity which 
is taken into account during following steps of algorithm. 

The assumption about the smoothness of the surface can 
also be employed for eliminating incorrectly found points. 
The transformation D→D’ mapping the points of the left 
image to the points of the right image and the inverse 
transformation D’→D are smooth enough. This makes 
possible using the following simple algorithm for checking 
found disparities. The disparity (dx0, dy0) of the point (x0, 
y0) is considered to have been found incorrectly and 
eliminated from further consideration if the disparity does 
not satisfy one of the two median filters – for direct and for 
inverse transformations: 

1.  

where (<dx>, <dy>) is the average disparity of the points 
adjacent to (x0, y0) except (x0, y0) or 

2.  

where (<dxrev>, <dyrev>) is the average disparity of points 
which was projected to the point adjacent to (x0

’, y0
’) = (x0, 

y0)  + (dx0, dy0)  except (x0, y0). 

(the points (x1, y1) and (x2, y2) are adjacent if |x1-x2|≤δ, |y1-
y2|≤δ where δ is the mesh granularity). 

This simple technique allows to correct errors of the 
correlation algorithm at all levels of the pyramidal 
algorithm practically without computational expenses. 

3.3 Determining the size of the scanned region. 

As indicated above the dispersion of disparity on the image 
can change greatly from one stereo pair to another. That is 
why the size of the scanned that can provide certain 
accuracy can range in some diapason. Thus the problem of 
determining this diapason arises. 

The proposed method is the following. First some small 
initial scanned region P0 is set. Then the correlation 
algorithm is run for some number of points large enough to 
carry out statistical analysis. After that by analyzing the 
histogram h(Pi,dx,dy) it is determined whether the scanned 
region was set correctly or it should be enlarged. In the 
latter case a new scanned region Pi+1 is calculated and the 
previous step is repeated. To make the algorithm 
computationally efficient all calculated values of the 
correlation function may be preserved and used in 
successive steps. 

Experiments show that the histogram for the large scanned 
region covering the correct values of disparities is usually a 
well-clustered two-dimensional area Pmax. The figure [1] 
illustrates a typical 2D histogram for approximately 600 
points.  

To find the area Pmax the following algorithm consisting of 
two steps is proposed. 

Step 1. On this stage there is no information at all about the 
location of Pmax. The algorithm starts with the small 
scanned region of square form with the center at (0, 0) and 
successively increases the size of the scanned square. If the 
scanned region does not cover Pmax found disparities are 
randomly located in the scanned region; when the scanned 
region starts covering Pmax they begin to cluster. Thus we 
need the reliable criterion to determine whether the 
histogram h(P,dx,dy) contains the clustered set. Several 
criteria were tested and the following one provided the best 
results. 

 12 13 14 15 16 17 18 19 20 21 

-3   1        

-2         1  

-1    1 1  1    

0   4 3 8 4  1  1 

1   3 20 21 16   1 1 

2  4 9 32 38 26 13 4   

3 1 4 19 55 52 40 26    

4  4 17 30 50 15 12 5 2  

5   2 4 7 13 8 4   

6   1 1  2 1    

7      1     

8           

Figure 1 2D disparity histogram 
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We will say that points (dx’,dy’) and (dx’’,dy’’) from P are δ-
connected if there exists such sequence of points from P 
(dx1,dy1)= (dx’,dy’), (dx2,dy2), …, (dxn,dyn)= (dx’’,dy’’) that 
h(P,dxi,dyi)>0, 1≤i≤n, and ρ((dxi,dyi), (dxi+1,dyi+1))≤δ. The 
relation of δ-connectivity is reflexive, symmetric and 
transitive. Hence there exists a partition of P according to 
this relation. Let P0

’ be the set from this partition 
containing the maximum number of points. Let us denote 
δ-closure of the set PP

’ from P as 

})),(),,((:),(
|),{(][

δρ ≤′′′∈′′∃
∈=′

ydxddydxPydxd
PdydxP

 

It is obvious that δ-closure of a δ-connected set is a 
connected set. Now we test the hypothesis that P0=[ P0

’] is 
the sought clustered region. For this purpose we introduce 
two hypotheses - H0: p(P0) = p0 and H1: p(P0) > p0 where 
p(P0) is the probability for disparity to get into P0 and p0 is 
this probability in the case of the uniform distribution: 
p0=|P0|/|P|. Let n be the number of points in P and n0 is a 
variate corresponding to the number of points in P0. H1 is 
accepted if n0≥n0min and is rejected otherwise. We want to 
minimize the probability of type I error – the probability 
that H1 will be accepted if H0 is true. Hence nomin may be 
determined from the condition that the probability of type I 
error is quite small (say less than or equal 0.05): 

∑
=

− ≤−=
n

nk

knkk

n
ppC

min0

05.0)1( 00α  

Thus the criterion for determining whether there is a 
clustered set can be formulated as follows. For δ=1,…, δmax 

find maximum δ-closure P0δ and calculate 

; if for some δ α∑
=

−−=
n

nk

knkk

n ppC
0

)1( 00δα δ≤0.05 then 

we decide that the clustered set is found. 

The typical number of points involved in this step is about 
50. 

Step 2 (high level of the pyramidal algorithm). The aim of 
this step is to calculate disparities on the thinned mesh; 
these values will be used in the low level of the pyramidal 
algorithm. From the previous step we have only an 
estimation of Pmax which can be used as the initial 
approximation. Since Pmax is a well clustered connected set 
it is reasonable to suggest that neighbors of points from 
Pmax for which many points were found also lie in Pmax. 
Thus the following algorithm may be used for determining 
Pmax. We start with the scanned region found in the 
previous step. The procedure for choosing the new scanned 
region Pi+1 is as follows: 

 

 the point (dx0, dy0) will be added to Pi+1 if the number of 
points in its Δ-neighborhood exceeds some fraction from 
the total number of points n: 

When Pi+1=Pi we proceed to the low level of the pyramidal 
algorithm. 
3.4 Algorithm for calculation of the correlation 
function. 

Let us suppose that the correlation function is to be 
calculated for a large number of points N of an image in the 
scanned region P of the same shape and size for all points. 
The following correlation function will be used: 

|),(),(|),,,(
),(

003 dyydxxgyxfdydxyx
yx

++−=ℜ ∑
Ω∈

 

 where Ω is a correlating region with a center at the point 
(x0, y0), for which we are seeking the disparity, f(x,y) and 
g(x,y) represent brightness in points of the base and 
scanned regions respectively, and  P)dy,dx( ∈

Generalizing calculation of correlation function from 
region Ω to an arbitrary region D: 

|),(),(|),,(σ
),(

dyydxxgyxfdydxD
Dyx

++−= ∑
∈

 

(Then ℜ3(x0, y0, dx, dy)=σ(Ω, dx, dy).) 

It is quite inefficient to calculate the correlation function 
for all N points independently. Indeed, if the correlating 
regions for two points overlap then computation of ℜ3 for 
each point involves the same summing over the 
overlapping region D so preliminary computation of σ(D, 
dx, dy) and its use for calculation of the correlation 
function may be much more effective. 

Two different methods exploiting this idea may be used for 
calculating the correlation function. 

Ω is assumed being rectangular xcorr x ycorr.

Method A. 

Let us divide left image into Nω non-overlapping small 
regions ωi; and for each region calculate the sum 

 

If it is possible to represent the region Ω as a union of ωi 
then we can calculate the correlation function as follows: 

 

Let ωi be squares of size (Lω, Lω). Two cases are possible. 

1. Ω is a square with a side L = NLLω. The mesh 
granularity equals to the distance between centers of 
two adjacent correlating regions - Lω. 
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2. Ω is a rectangle with sides NLLω or (NL+1)Lω The 
mesh granularity equals to the distance between 
centers of two adjacent correlating regions - Lω/2. 

To estimate the time of working of this algorithm as 
compared to the standard one let us calculate the number of 
elementary operations such as summing and subtraction. 
The standard algorithm involves n0=NL2P such operations, 
where N is the number of points of a mesh, L is the linear 
size of the correlating region and P is the number of points 
in the scanned region. 

The optimized algorithm consists of two steps. The number 
of operations in the first one (calculating σ(ωi, dx, dy)) is 
n1=NωLω

2P , and the number of operations in the second one 
(calculating ℜ3(x, y, dx, dy)) is n2=NNL

2P, where Nω is the 
number of regions ωi in an image and NL

2 is the number of 
regions ωi in Ω. Thus, the whole algorithm takes n = 
(NωLω

2
 + NNL

2)P operations. The increase in time is 
 

In the standard algorithm the correlating region of size 
11x11 was used. Below are two examples of realization of 
the optimized algorithm in which the correlating region 
most closely approximates the square 11x11. 

Α1.  ωi are squares 4x4, correlating region is the square 
12x12, mesh granularity is 4; n0/n=4.8 

Α2. ωi are squares 3x3, correlating region has the size 9x9, 
9x12, 12x9 or 12x12, mesh granularity is 1.5; n0/n=8.3  

Thus, in the first case the increase in speed is 4.8 times and 
in the second 8.3 times. 

Method B. 

Let us denote Ω(x, y) as the square of size (2Δ+1)x(2Δ+1) 
and ω(x, y) as the rectangle 1x(2Δ+1) with centers at (x, y): 

 

We can write 

 

 (2) 

   , 

 (3) 

 

Thus, the following algorithm can be used to calculate the 
values of the correlation function for the points of a 
rectangle xmin≤x≤xmax, ymin≤y≤ymax with a correlation region 
(2Δ+1)x(2Δ+1) and with a scanned region P: 

• Calculate σ(ω(x, y), dx, dy) for the left border of a 
rectangle xmin≤x≤xmax, y=ymin and for all (dx, dy) from P 

• Calculate σ(ω(x, y), dx, dy) for all points of a rectangle 
xmin≤x≤xmax, ymin≤y≤ymax using (2) 

• Calculate σ(Ω(x, y), dx, dy) for the upper border of a 
rectangle x=xmin, ymin≤y≤ymax 

• Calculate ℜ3(x, y, dx, dy) = σ(Ω(x, y), dx, dy) for all 
points of a rectangle xmin≤x≤xmax, ymin≤y≤ymax using (3) 

Assuming xmax -xmin>>Δ, ymax -ymin>>Δ we can neglect the 
time of computation of the first and third steps. The second 
and the fourth steps require N uses of (2) and (3) 
accordingly, each formula uses 3 elementary operations. 
Thus the number of elementary operations can be estimated 
as n = 3NP. The increase in time is n0/n=L2/3=40.3 for a 
correlating region of 11x11. 

Modifications of the algorithm for calculation of the 
correlation function. 

These methods can only be used in the low level of the 
pyramidal algorithm since they require the scanned region 
to be the same for all points. However it is possible to 
modify them to deal with the high level where scanned 
regions for different points may differ. 

Modification for the method A. 

We will not use the preliminary step of computation of 
σ(ωi, dx, dy). Instead we calculate σ(ωi, dx, dy) only when 
necessity arises: suppose we want to calculate ℜ3(x0, y0, dx, 
dy) and ωi belongs to Ω; if σ(ωi, dx, dy) has not been 
calculated before then calculate it and store the value, 
otherwise just use the value computed before. 

Modification for the method B. 

For the calculation of σ(ω(x, y), dx, dy) use the following 
algorithm: 

- if σ(ω(x-1, y), dx, dy) has been calculated then use (2); 

- if not use the direct summing. 

Analogously for the calculation of σ(Ω(x, y), dx, dy) use 
the same algorithm: 

- if σ(Ω(x, y-1), dx, dy) has been calculated then use (3); 

- if not use the direct summing of σ(ω(x, y), dx, dy) whose 
values are calculated using the previous algorithm. 

The points for which the correlation function is calculated 
should be processed in the following order: first the points 
in the first column from top to bottom, then the points in 
the second column, and so on. 

The property of these modifications is that if used with the 
same scanned region for all points they involve the same 
number of calculations of auxiliary values (σ(ωi, dx, dy) for 
the method A and σ(ω(x, y), dx, dy) for the method B) 
which are used as the original algorithms. However these 
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modifications require additional overhead charges and thus 
run slower. The possible solution may be to run the original 
algorithm for some subset of P P P

’ before applying the 
modified algorithm where 

}),,(:),{( maxmax ndydxPhPdydxP β>∈=′  

and β is determined experimentally. 

The mesh granularity in the method A1 is 4, in A2 is 1.5 
and in the method B is 1. Hence method A1 may be used in 
the high level of the pyramidal algorithm and methods A2 
and B in the low level. Which method should be used 
depends on the required accuracy and time constraints: 
method B gives in 2.25 more points than method A but runs 
about 2 times slower. 

3.5 Finding the maximum of the correlation 
function. 

To determine the disparity we should find the maximum of 
the normalized correlation function on the scanned region 
P. The task is complicated by the fact that the function 
often has several local maxima on P so most methods for 
finding the maximum of a function do not work. We used 
the following method allowing to reduce the number of 
operations required for calculating correlation function up 
to four times as compared to the case of calculating the 
correlation function for all points of P. 

• Set }
2

,
2

|),{(0 NdyNdxPdydxP ∈∈∈=  

- points of P lying on the grid thinned two times 

• (α) Calculate the correlation function for points of Pi

• Find the maximum of the correlation function ℜ3max 
among calculated values 

• Set :),(|),{( 001 iii PdydxPdydxPP ∈∃∈=+ U  

}),(,1||,1|| 3max3300 ℜΔ−ℜ≥ℜ≤−≤− dydxdydydxdx  

• If Pi+1 ≠ Pi then go back to (α) 

The value of Δℜ3 is determined experimentally from the 
condition that the number of points for which the minimum 
is found incorrectly is less than some small value say less 
than 1% from the total number of points. 

 This algorithm can be modified in such a way that for a 
certain number of points it will find disparity even if it does 
not lie in the scanned region practically without additional 
computational expenses. For that reason we replace the rule 
for choosing Pi+1 with the following rule: 

:),(|),{( 001 iii PdydxdydxPP ∈∃=+ U  

)},,(
),(,1||,1||

003

max3300

dydxP
dydxdydydxdx

ℜΔ−
−ℜ≥ℜ≤−≤−  

where 

P)dy,dx(,
P)dy,dx(,{)dy,dx,P(

00
2

3

00
1

3
003 ∉ℜ

∈ℜ
=ℜ

Δ
ΔΔ  

The disparity variations often do not exceed several pixels. 
It is a very rough scale for performing subsequent 
calculations and deciding about recognition. This problem 
is put away by introduction of super-resolution. Super-
resolution is used to increase the granularity of scale by 
employing information from neighboring points. Simple 
and thus fast method of increasing resolution is used. 
Suppose the correlation function values are calculated in 
some scanning region. The maximum of the correlation is 
then found. If it lies on a boundary of the its coordinates 
are considered to be the sought disparity. Otherwise, the 
maximum and the nearest neighbors are interpolated by a 
convex surface (for example parabolic). The disparities 
then are calculated as coordinates of the surface crest. It is 
easy to see that the number of disparity gradations obtained 
by such method strongly exceeds the number of source 
points. 

4. RESULTS AND CONCLUSION 

The presented techniques were implemented in the 
framework of face recognition system [1] and were tested 
on a database of human faces. Figure 2 illustrates the 
source images. The white pixels on the figure represent 
some of correspondences found on images. Figure 3 
displays disparity maps, calculated by the algorithm. The 
typical working time is 2-3 seconds on Pentium-II/300 
processor.  

 
Figure 2 Source images 

 
Figure 3 X- and Y-disparity maps 

The testing of the described algorithms has shown that the 
precision of reconstruction is the same as in the 
stereoscopic system, while the time of execution slightly 
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increases. It can be successfully used in various 
applications of monocular computer vision systems for 
reconstructing the 3D shape of object in a close to real time 
scale.  
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