
NON-ORTHOGONAL CO-ORDINATES IN COMPUTER GRAPHICSi

Vaclav Skala ii

Department of Informatics and Computer Science
University of West Bohemia, Univerzitní 8, Box 314

306 14 Plzen, Czech Republic
skala@kiv.zcu.cz http://iason.zcu.cz/~skala

ABSTRACT

There are many applications that are not naturally based on the orthogonal co-ordinate systems, like
ultrasound imaging, astronomy, mechanical computations etc. In many cases it is necessary to transform
the problem formulation to the orthogonal co-ordinate system, where the problem is solved, transform
the solution back and visualize the solution. The polar, spherical or cylindrical co-ordinate systems are
natural to many problems and sometime also used for computations. It will be shown that the polar
systems in E2 can be used for the visualization pipeline and some properties of such system will be
discussed including geometric transformation in the polar system.

Keywords: algorithm complexity, computer graphics, geometric transformation, non-orthogonal
co-ordinate system, point-in-polygon, line clipping, convex polygon.

1 INTRODUCTION

There are many applications where the polar
co-ordinate system is used for finding a solution of
the given problem, especially in technical problems
solutions (FEM, flow computation, radiation, radar
and sonar applications), medical imaging (ultrasound
imaging) etc.

It is a usual practice that all data from those
applications are transformed to the standard
orthogonal co-ordinate system, where all data are
processed. The data are then displayed directly or
transform back to the original co-ordinate system.
Nevertheless it is well known that representation of a
point in E2 is different from a line representation and
therefore the processing pipeline have to respect this
fact. The polar system offers some possibilities how
to handle graphical information in an unambiguous
way and hopefully can lead to new understanding of
some fundamental algorithms and developing new
more effective methods.

2 ORTHOGONAL CO-ORDINATE SYSTEM

The orthogonal co-ordinate system and point
representations are well known and used nearly
exclusively. In the majority of applications the

homogeneous co-ordinates are used and a point is
represented as

[x , y , w]T

where: w is the homogeneous co-ordinate.

This representation enables us represent all geometric
transformations by using matrix multiplication. On
the other side a line p can be represented by an
implicit function as

a x + b y + c = 0

or by explicit functions as

y = k x + q if k ≠ ∞

or as

x = m y + p if m ≠ ∞

or parametrically as

x(t) = xA + s t t ∈ (-∞ , +∞)

where: xA is a point on the line p and s is directional
vector of this line.

The problem is when we want to manipulate with the
lines. How we can handle them? Let is consider
a point x and its co-ordinates in the polar co-ordinate
system

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

x = [ρ , ϕ]T

It can be seen that there the point x defines also
unambiguously a line p that is orthogonal to the line
defined by this point and by the origin of the polar
co-ordinate system, see fig.1.

Figure 1

It is well known, that the geometric transformations
can be represented by matrices generally, i.e. for the
translation we get:

=

1100

10

01

1

'

'

y

x

b

a

y

x

i.e. x' = T (a ,b) x

and for the rotation we get

 −
=

1100

0cossin

0sincos

1

'

'

y

x

y

x

ϕϕ
ϕϕ

i.e. x' = R (ϕ) x

But what does these geometric transformations mean
for applications in the field of radar signal processing
where the polar representation is native one?

Of course there are an unambiguous transformations
to the polar and from the polar to the Cartesian
co-ordinate systems, but it is not a natural co-ordinate
system to the problem. Therefore the question
whether a similar operations for geometric
transformations can be defined for polar co-ordinate
system can be derived and what would be properties
and possible usage.

3 POLAR CO-ORDINATE SYSTEM

It is well known that the transform from the Cartesian
to the polar co-ordinate system can be defined as

x = ρ cos ϕ
y = ρ sin ϕ

where ϕ ∈ < 0 , 2 π).

This transformation is often used for a circle or
an ellipse (with small modification) generation. It is
necessary to have an efficiency of all operations in
mind in all computer graphics and data visualization
system as the volume of processed data is very high.

Therefore we must avoid all cos and sin function
computations as much as possible. Also we will
require that all geometric transformation will be
possible to represent by matrices and the composition
of the geometric transformation should be
represented by matrix multiplication.

Let us suppose that the point x = (x , y) can be
represented by a vector in "homogeneous polar
space" as

[ρ , cos ϕ , sin ϕ]T

so that

 x = ρ cos ϕ
y = ρ sin ϕ

and we will avoid divisions needed in the "cartesian
homogeneous co-ordinates", where

X = x /w and Y = y /w

Of course that there are different representations for
the polar co-ordinate system but there is a hope that
this is the effective one.

This representation enables us to represent not only
the given point but also the given line in the polar
co-ordinate system unambiguously.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 2

It can be seen that the point A is unambiguously
represented by the vector [ρ , cos ϕ , sin ϕ]T as well
as the line p. The line p is defined as a line passing
the point A that is orthogonal to the line OA, where
O stands for the origin of the polar co-ordinate
system.

In the polar co-ordinate system the translation matrix
is defined as

=

ϕ
ϕ

ρ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

00r1

'sin

'cos

1

'

i.e. x' = T (r) x

where: r is the translation parameter. There is also an
alternative definition that enables to move points
λ times, e.g. relatively to the original distance from
the origin.

=

ϕ
ϕ

ρλ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

000

'sin

'cos

1

'

i.e. x' = TR (λ) x

The rotation operation is defined in a similar way as
the rotation in the Cartesian co-ordinate system. Let
us suppose that we want to rotate the point about the
origin with an angle ∆ϕ. It is well known that

sin(ϕ+∆ϕ) = sinϕ cos ∆ϕ + cosϕ sin ∆ϕ

cos(ϕ+∆ϕ) = cosϕ cos∆ϕ - sinϕsin∆ϕ

These formulas enable us to avoid cos and sin
functions computations for each graphics primitive as
we need to compute only cos∆ϕ and sin∆ϕ functions
once for the transformation matrix. Considering this
entity we can write the matrix for the rotation in form

∆∆
∆−∆

=

ϕ
ϕ

ρ

ϕϕ
ϕϕ

ϕ
ϕ

ρ

sin

cos

1

cossin00

sincos00

0010

0001

sin

cos

1

'

i.e. x' = R (∆ϕ) x

It can be seen, that the operations shown above, can
handle with points as well as with lines because the
line is unambiguously defined as dual primitive to the
given point. Then the general transformation matrix
in E2 case is defined as

∆∆
∆−∆

=

ϕ
ϕ

ρ

ϕϕ
ϕϕ

ϕ
ϕ

ρ

sin

cos

1

cossin00

sincos00

0010

001

sin

cos

1

' r

i.e. x' = Q (r , ∆ϕ) x

There is a straightforward extension to E3 space if the
cylindrical co-ordinate system is to be used. We can
describe a point by a vector:

[ρ , 1 , cosϕ , sin ϕ , cosϑ , sinϑ]T

and general rotation transformation by a matrix Q as

∆∆
∆−∆

∆∆
∆−∆

ϑϑ
ϑϑ

ϕϕ
ϕϕ

cossin0000

sincos0000

00cossin00

00sincos00

000010

000001

i.e. x' = Q (r , ∆ϕ , ∆ϑ) x

4 TRANFORMATION CONCATENATION

In general, very complex transformation might be
needed and it is desirable to be handling geometric
transformations preferably by the corresponding
matrix multiplication.

Let's consider a non-trivial case, when the point A
should be moved with the given offset ∆x, see fig.3.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 3

Of course, non-trivial computation is needed if this
operation should be performed by using the cartesian
co-ordinate system or by deriving the transformation
formula directly. Nevertheless this operation can be
generally split into the following elementary
transformations:

1. Move the point A to the origin distance r1.
2. Make a rotation by the angle ∆ϕ.
3. Move the point A from the origin to the

distance r2.

So we get the following simple steps:

 −

=

ϕ
ϕ

ρ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

00r1

'sin

'cos

1

' 1

∆∆
∆−∆

=

ϕ
ϕ

ρ

ϕϕ
ϕϕ

ϕ
ϕ

ρ

sin

cos

1

cossin00

sincos00

0010

0001

sin

cos

1

'

=

ϕ
ϕ

ρ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

00r1

'sin

'cos

1

' 2

where: r is the distance of the point from the origin
and ∆ϕ is the angle that defines the rotation. So we
get

x' = T (-r1) x x'' = R (∆ϕ) x'

x''' = T (r2) x'

It means that the whole transformation can be defined
as:

x''' = Q (r) x

where: Q = T (r) R (∆ϕ) T (-r)

We have dealt with geometric transformations for
points till now. Everybody can see that the
representation of the point A is unambiguous. We can
now define this point as a reference point, which lies
on the oriented line p and which is perpendicular to
the line that passes the line on which the O and A
points lie, see fig.4.

Figure 4

It means that we are able to handle lines in a similar
way.

5 APPLICATIONS OF THE PROPOSED
REPRESENTATION

There are many possible applications that could use
an advantage of the polar or cylindrical
representations in some extent. Nevertheless this
model is useful especially for non-traditional
approach to the algorithm design.

Let us imagine two simple problems like point-in-
convex polygon, usually solved in O(N) [Ska93a],
resp. O(lg N) steps, or line clipping by convex
polygon often solved by the Cyrus-Beck's algorithm
that has O(N) complexity), see [Ska94b], [Bui99a],
where N is a number of edges of the given polygon.

It can be seen that the both problems are dual in some
sense. If the point-in-convex polygon problem is
considered than it is naturally of O(lg N) complexity
as we can seek in the array with ϕ values and because
of the known order we can make it in O(lg N) steps,
see fig.5. We only have to check on which side of the
corresponding edges the point A lies.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 5

This algorithm can be even speed up in order to avoid
the search with the O(lg N) complexity. This leads to
the algorithm with the run-time complexity bellow
O(lg N).

Let us imagine, that we split the whole interval for the
ϕ values to M very small subintervals equidistantly,
see fig.6.

Figure 6

Let us suppose that each element of the array contains
an information about the actual edge of the given
polygon that is intersected by the i-th wedge that is
∆ϕ wide and has a vertex in the origin of the
co-ordinate system. The value of the index i can be
determined as

Mi
π
ϕ
2

:=

where: M is number of intervals.

It can be seen, that if we have a point with (ρ , ϕ)
co-ordinates, we can determine directly the index of
the wedge in which the point lies, see fig.7.

Now it is necessary to determine only on which side
of the polygon edge the point lies. Therefore the
above mentioned algorithm is of O(1) run-time
complexity while the pre-processing complexity is of
O(N M).

Figure 7

This algorithm cannot be implemented, as it would
require an infinite memory, due to the fact that we
presumed that ∆ϕ → 0, i.e. M → ∞ . Nevertheless it
is possible to determine max.∆ϕ, i.e. the maximal
angle of the wedge, for the given polygon from its
geometrical properties. In every case the algorithm
must expect that two edges will be tested as some
wedge can contain two vertices, see fig.7.

Figure 7

A similar algorithm to this was recently developed for
the cartesian co-ordinate system, verified and tested.
It proved the O(1) expected run-time complexity and
detailed description can be found in [Ska96b].

Nevertheless the polar co-ordinate system gives us
even faster solution for point-in-polygon test as we
can also pre-compute ρ min and ρ max values and
store those values with each wedge and possible
situations are as follows:

• ρ ≤ ρ min point is inside
• ρ max ≤ ρ point is outside
• in this case the relevant edge must be tested.

So the whole algorithm can be briefly described by
following steps:

Mi
minmax

min:
ϕϕ

ϕϕ
−

−=

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

where: M is number of wedges used to split the given
polygon. ϕ max = 2π and ϕ min = 0.

if ρ min ≥ ρ then begin INSIDE; EXIT; end
else
 if ρ ≥ ρ max then begin OUTSIDE; EXIT; end

 else test the point (ρ,ϕ) with the i-th edge

It means that we will need a detailed computation
only for those cases when the point lies inside of the
hatch area, see fig.7.

It can be shown that due to the duality principle that a
line is dual to a point and vice versa, see [Kol94a] for
details, and the point-in-convex polygon test is dual
to the test whether a line intersects the given convex
polygon. Therefore a similar approach could be taken
for a line clipping problem and develop an algorithm
with O(1) complexity in polar co-ordinate system. A
similar algorithm to this was recently developed for
the cartesian co-ordinate system, verified and tested.
It proved the O(1) expected run-time complexity and
detailed description can be found in [Ska96d].

It is necessary to note that if ∆ϕ is actual angle of
a wedge and

∆ϕmax < ∆ϕ

we get the O(N) complexity in the worst case as we
have broken the presumption of the algorithm.

6 CONCLUSION AND FUTURE WORK

The presented approach and suggested graphical data
representation is not primarily used for direct usage
in the fields of computer graphics and data
visualization. This representation gives also a very
simple way how to handle widgets or cones that
might be very useful in some cases.

The most important result is that this approach gives
a quite different view on some problems to be solved
and there is a hope that this approach can be used for
the cylindrical and spherical co-ordinate systems, too.
It is expected that non-linear co-ordinate systems
with application of dual representation principles can
lead to new, more simple, more robust and faster
algorithms.There is a believe that the above shown
principles can be used especially for problems in E3

and problems connected to line clipping, intersection
computation, ray tracing methods and others.

ACKNOWLEDEMENTS

The author would like to thanks to all who
contributed to this work, especially to MSc. and PhD.
students at the University of West Bohemia in Plzen

that have stimulated this thoughts and development of
new algorithms based on it. This paper benefited
from several discussions with them a lot.

REFERENCES

[Bui97a] Bui,D.H., Skala,V.: Fast Algorithms for
Line Segment and Line Clipping in E2, The
Visual Computer, 1997.

[Bui99a] Bui,D.H., Skala,V.: New Fast Line Clipping
Algorithm in E2 with O(lg N) Complexity,
Int.Conf. SCCG'99, Budmerice, Slovak Republic,
pp.221-228, 1999.

[Kol94a] Kolingerova, I.: 3D - Line Clipping
Algorithms - A Comparative Study, Visual
Computer, Vol.11, No.2, pp.96-104, 1994.

[Ska94a] Skala,V.: O(lg N) Line Clipping Algorithm
in E2, WSCG´94 International Conference,
pp.174-191, 1994.

[Ska94b] Skala,V.: O(lg N) Line Clipping Algorithm
in E2, Computers & Graphics, Pergamon Press,
Vol.18, No.4.

[Ska96a] Skala,V.: An Efficient Algorithm for Line
Clipping by Convex and Non-Convex Polyhedra
in E3, Computer Graphics Forum, Vol.15, No.1,
pp.61-68, 1996.

[Ska96b] Skala,V.: Line Clipping in E2 with O(1)
Processing Complexity, Computers & Graphics,
Vol.20, No.4, pp.523-530, 1996.

[Ska96c] Skala,V., Lederbuch,P. ,Sup,B.: A Compari
son of O(1) and Cyrus-Beck Line Clipping
Algorithm in E2 and E3, SCCG96 Conference
proceedings, Comenius Univ. Bratislava, Slovak
Republic, pp.27-44, 1996.

[Ska96d] Skala,V.: Line Clipping in E3 with
Expected Complexity O(1), Machine Graphics
and Vision, Poland Academy of Sciences, Vol.5,
No.4, pp.551-562, 1996.

i This work was supported by the Ministry of
Education of the Czech Republic - projects
ME 259, A2030801 and VS 97155

iiAffiliated with Multimedia Technology Research
Centre, University of Bath, BATH BA2 7AY, U.K.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

