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Abstract 
The problem of the interactive visualization of isosurfaces in 
volume data arises in medical applications, visualization of 
mathematical simulation results and many other areas. We 
propose an adaptive approach for interactive extraction and 
visualization of isosurfaces that employs hierarchical 
representation for the volume data and view-dependent isosurface 
reconstruction at the different levels of detail. To speedup 
extraction process an isosurface is constructed only in the visible 
part of the dataset and its updates are performed incrementally as 
observer moves. Possible cracks between isosurface parts 
constructed at different hierarchy levels are eliminated by 
proposed stitching procedure. Due to low dataset preprocessing 
costs our approach has been proven to handle dynamical updates 
in volume data. 
Keywords: interactive isosurface reconstruction, volume datasets, 
Marching Cubes, level of detail. 

1. INTRODUCTION 
Isosurface construction is one of widely adopted approach for 
scalar volume datasets visualization. Methods constructing 
polygonal approximation of isosurface are appealing in the 
applications where rendering rates are need to be near real ones 
because of powerful 3D hardware accelerators boosting rendering 
of polygonal meshes. Existing polygonal isosurface construction 
methods are based on Marching Cubes algorithm [9], which 
performs triangulation for every cell of a scalar volume dataset 
thus reconstructing the whole isosurface. Several methods exist to 
disambiguate cell triangulation and eliminate “holes” that are 
possible in a mesh produced by original MC algorithm [2,5,10]. 
However simple and robust, Marching Cubes algorithm produces 
unacceptably huge amount of polygons for datasets that are 
typical for CT and numerical simulations. Besides, mesh 
construction times also make a real-time visualization for such 
datasets almost impossible. 
To handle such a mesh complexity one can employ various mesh 
simplification methods on a post – process step 
[3,4,5,7,8,11,14,16] but it does not help with mesh construction 
times that are generally determined by the dataset’s dimensions. 
The latter issue is of a concern for methods that construct 
hierarchies of datasets with successively smaller dimensions from 
source dataset that are employed for a coarser isosurface 
representation [13,15]. Some of them are based on the octree 
approach where each of the eight neighboring cells corresponding 
to octree nodes can be recursively combined into a larger cell that 
corresponds to parent octree node. 
Selecting a hierarchy level for cells to be processed during 
isosurface construction one controls a level-of-detail for resulting 
surface. This idea had its further refinement in [15] where 
isosurface is constructed with dataset’s hierarchy level varying 

over dataset parts thus producing varying level-of-detail in 
resulting surface’s parts. A distance to observer and local surface 
curvature determines hierarchy level selected at a dataset part. 
Another selection criteria can be applied as well. 
Construction of isosurface patches at different dataset hierarchy 
levels imposes problems with isosurface continuity [5]. This issue 
was addressed in [5, 15] where special stitching procedure for 
isosurface patches extracted from different hierarchy levels was 
proposed. 
Implementation of this adaptive hierarchical approach in 
isosurface construction was shown to be a basis for real-time 
isosurface visualization [15]. Although the method for interactive 
isosurface visualization this paper describes is based on similar 
ideas it proposes certain optimizations on isosurface extraction 
and visualization processes. Another issue concerned by method 
proposed is a visualization of dataset modifications. The paper 
layout is as follows: in the Section 2 we overview hierarchical 
construction approaches for faster extraction and visualization of 
isosurfaces. Section 3 addresses stitching isosurface patches 
generated at different level of hierarchy. Section 4 describes how 
we employ view dependency to minimize processing and amount 
of polygons produced during isosurface construction. Section 5 
addresses visualization of dynamically updated datasets. Paper is 
finalized with results described in Section 6. Conclusion and 
plans for future are in Section 7. 

2. HIERARCHICAL ISOSURFACE 
CONSTRUCTION 
Hierarchical approach in volume visualization implies usage of 
datasets originated from the source dataset that can be used to 
construct successively coarse representations. Some methods 
construct such a dataset hierarchy applying low - pass filter to the 
source data several times and then adaptively process smoothed 
dataset regions extracting isosurface in it [5,15]. Although 
creating appealing visualization results, those methods require 
complex and lengthy filtering of the dataset. 
Another approach used to construct such a dataset hierarchy 
employs subsampling. In this case the even samples along each 
direction are employed to create a subsampled dataset 
representing another level of hierarchy. 
If datasets from neighboring hierarchy levels differ for two times 
in size for each direction, it is easy to construct an octree over 
their cells. As one cell contains eight smaller ones from neighbor 
hierarchy level, the corresponding octree node refers eight other 
nodes corresponding to smaller cells. Octree nodes may carry 
some information used during isosurface extraction/construction. 
In our case the main goal is checking an existence of an 
isosurface patch in cell. When using an octree the node existence 
can represent a surface patch existence for a corresponding cell so 
an isosurface can be constructed by simply traversing existing 
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nodes in octree and pruning traversal as required level-of-detail is 
reached. 
As shown in [15], usage of more than 2 or three detalization 
levels and corresponding dataset hierarchy levels results in 
distracting visual artifacts during isosurface construction so a 
support for all log2N hierarchy levels (where N is a number of 
samples along direction for original dataset) is excessive. 
Moreover, usual octree organization where each node requires up 
to eight (possibly 4-byte) pointers to its children might be 
memory consuming. We propose another hierarchical data 
structure that holds information about surface patch presence in 
dataset cell. For each dataset hierarchy level a bitmask is created 
and supported. Each cell containing isosurface patch in it or one 
of its children cells has corresponded “one” in bitmask while 
others have “zeroes” set in it. Such a bitmask adds a memory 
overhead no more than 12,5 % for each dataset hierarchy level if 
byte is used for scalar value and even less if four-byte floats or 
eight-byte doubles are used. The memory overhead imposed by 
bitmask allows checking an isosurface patch existence in a cell 
from any hierarchy level of interest using a single bitmask lookup 
instead of traversing of several octree levels. Moreover, the 
amount of operations required for bitmask construction does not 
exceed corresponding amount for an octree construction. 
Summarizing above it could be said that our approach while being 
based on hierarchical isosurface extraction / construction ideas as 
illustrated in [15] uses its own hierarchical data structures that 
speed up checking an isosurface patch existence in any cell from 
any dataset hierarchy level. 

3. STITCHING PROCEDURE 
Straightforward usage of different dataset hierarchy levels for 
LOD isosurface reconstruction leads to certain problems with 
continuity in resulting polygonal mesh [5]. As stated in [15] it is 
due to scalar field discontinuities introduced by subsampling or 
low – pass filtering used to construct levels of dataset hierarchy. 
Cracks in surface produced at the boundary of dataset regions 
with different detailing in them are illustrated at Fig. 1. That is 
why after applying regular MC-like method for hierarchical 
isosurface construction an additional stitching procedure should 
be performed for elimination of possible cracks. 
This procedure may modify isosurface patch at finer detailing 
level, coarser detailing level [5] or both. Our approach employs 
fine-detailed patch modifications and assumes that neighboring 
cells are reconstructed using the same or neighbored dataset 
hierarchy levels (i.e. they differ for no more than two times in 
their dimensions). 
Let us consider rectangle ABCD that is on the boundary between 
regions with different detailing. Linear interpolation of values at 
corresponding edge centers A’, B’, C’, D’ between values at 
vertices of the hosting edges AB, BC, CD, DA leads to patches 
coincidence at the edges mentioned causing points P” and Q” 
where isocurve intersects rect’s edges to became the P’ and Q’. 
But this does not eliminate cracks in internals of ABCD [15] 
because isocurve is approximated by straight line at coarser 
detailing level while being a broken line at the finer one. That is 
where our stitching procedure comes into play. It is proposed to 
straighten (if necessary) isocurve at the finer detailing level by 
moving isocurve vertices that lay inside rectangle ABCD to their 
neighbors on rectangle edges (moving P to P’ and Q to Q’). After 

that modifications the finer isocurve completely coincides with 
coarse one. 
Because result of stitching procedure is ruled only by data from 
the coarser level the original value at the center of ABCD is of no 
concern. However, it is required for initial construction of the 
finer isocurve. Actual value at the central vertex is of no concern 
but its sign choice should be ruled by a disambiguation method 
employed during polygonizing of isosurface. In our work the 
“preferred polarity” [2] approach is used so the value sign in face 
center is chosen to comply with “polarity” used during cell 
polygonizing. 

Cell from finer level Cell from coarser level 

Actually, only sample signs at face corners as well as interpolated 
samples signs in the centers of the face edges determine all vertex 
replacements performed during stitching. Thus all possible (valid) 
combinations of the signs can be easily summarized in lookup 
table to speedup stitching process. 

4. VIEW-DEPENDENT ISOSURFACE 
RECONSTRUCTION 
Knowledge about observer's position during visualization helps in 
performing certain optimizations on the visualization process. As 
was already mentioned in Section 2, the isosurface in different 
volume parts can be refined adaptively according to some criteria. 
Distance to a current observer' position provides us with one of 
such criterion that allows to leave distant surface parts at coarser 
levels of detalization thus reducing the number of polygons 
constructed. This criterion is employed in [15] where the 
following correspondence between distance to observer and 
recommended detailing level is proposed: 
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where  is a recommended dataset hierarchy level, Level ⎣ ⎦x  is 
an integer less or equal to x ,  is a distance to a cell center and s

3=d  is a diagonal of the level 0 cell. This formulation 
assumes that cells from different hierarchy levels used for 
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isosurface reconstruction have their edge length depending on 
hierarchy level chosen as follows: 

levelLength 2= ,  (2), [ ]Nlevel ..0∈

where  is a hierarchy level used, is a maximal 
hierarchy level employed, zero hierarchy level corresponds to an 
original dataset. 

level N

Another issue is that a camera frustum formed by clipping planes 
bounds a visible volume region that is only a fraction of the whole 
volume. One can restrict isosurface construction process to be 
performed only in a visible volume part. This condition should be 
considered for substantial processing decrease for the data to be 
visualized in applications where observer does not see a whole 
dataset at a time or this situation rather rare [6]. 
Both issues mentioned above can be considered along with 
isosurface mesh reuse and its incremental updates caused by 
changes in observer’s position and dataset modification to reduce 
processing times during real-time visualization process and 
number of polygons isosurface mesh consists of. Mesh cache or 
reuse is one of the major differences of our method from [15] 
where it is reconstructed from the scratch for each frame. 
Supporting incremental mesh updates for moving observer results 
in several difficulties in its implementation. First, level-of-detail 
changes for reasonable amount of cells after observer make its 
step in dataset. This causes a necessity to locate those cells and 
update isosurface patches in them according to a new detailing 
level. Next, a movement of a camera frustum requires processing 
the certain dataset parts for an isosurface extraction and merging 
with existing mesh while eliminating isosurface patches 
associated with cells that leave frustum. 
More serious concern is that cached mesh is constructed for 
certain threshold value and should be dropped if threshold value 
changes causing difficulties in interactive adjustment of the latter. 
That is why our approach is appropriate when user spends more 
time navigating in a visualized dataset and adjusts isosurface 
threshold value rather occasionally. 

4.1 Initial isosurface construction 
Before construction of initial visible isosurface part it is necessary 
to initialize data structures required for hierarchical isosurface 
reconstruction, e.g. surface containment bitmasks for each dataset 
hierarchy level of interest. This initialization starts from cells for 
original dataset where each cell is examined for a containment of 
an isosurface patch in it. Checking succeeds if dataset samples at 
cells’ vertices have different signs compared to threshold resulting 
in “one” set in a corresponding place in bitmask for original 
dataset level. Otherwise, “zero” is set. 
Next, bitmasks for remaining hierarchy levels are initialized. This 
initialization requires only bitmask from the previous level to be 
available as “one” is set when one of child cells from previous 
level has “one” set in bitmask from their level, otherwise “zero” is 
set. 
Initial observer’s position and viewing direction along with depth 
of view controls a viewable volume part. For simplicity, this 
volume part is approximated with axis – aligned box that contains 
it. Isosurface construction starts with covering this box by cells 
from coarsest dataset hierarchy level of interest. Each cell that has 
isosurface patch in it (that is detected as a result of inspection of 
the corresponding bitmask) is checked if its level is equal to one 

given by (1). If it is a case, a cell gets triangulated and triangles 
are added to resulting isosurface mesh otherwise its processed 
recursively until level recommended by (1) is met. During 
triangulation a stitching procedure from Section 3 is applied if 
necessary. Information about non-empty (those having “one” bit 
set in a corresponding bitmask) cells that meet criterion (1) is 
added into hash table for a future usage. This hash table allows an 
easy lookup for cell information by its position and level. If a 
surface patch was constructed for a cell then cell information in a 
hash table is updated with a reference to the triangles constituting 
a patch. 
This initialization activity results in isosurface mesh for a 
viewable part of a dataset with detailing level depending on a 
distance to observer. Another result is the prepared internal 
structures (such as bitmasks and hash table) that will be used for a 
handling of future mesh updates with observer movement and 
dataset modifications. 

4.2 Processing incoming volume parts 
As observer moves, both position and size of the closest axis-
aligned bounding box containing camera frustum change. Let us 
denote this bounding box at previous camera position as prevΩ  

and currΩ  at current position. Volume that comes into camera 

frustum box at current frame is  and it can be 

broken into several axis-aligned boxes . For each such 
box we apply procedure similar to one described in the previous 
subsection to construct new isosurface part. The only difference 
comes from the following consideration. When previous 
isosurface part was constructed the cells intersecting its box 
boundary were possibly added. Isosurface construction for the 
new volume regions should account for those cells and omit from 
processing those ones that intersect a common boundary of 

prevcurr ΩΩ \

nBB ..1

Fig. 2.  bounds prevΩ ,  bounds cells that cover 

prevΩ ,  bounds currΩ , bounds cells that cover 

currΩ ,  is a common part of currΩ  and prevΩ
boundary,  marks actually processed cells,  marks 
cells omitted from processing. 
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prevΩ  and . The result of applying this procedure is 

illustrated in Fig. 2. 
currΩ

4.3 Updating isosurface within camera 
frustum 
Besides adding isosurface parts for volume regions incoming into 
camera frustum box the camera movement forces modifications in 
the isosurface part that is already constructed. 
First, for cells leaving the bounding box for camera frustum 
corresponding triangular patches should be removed from 
isosurface mesh. Second, for cells that remain in the bounding 
box detailing level recommended by (1) may change so they (and 
isosurface patches within them) should be replaced with ones 
satisfying (1). Third, changed detailing level in cells mentioned 
above requires updates in surface stitching with their neighbors. 
Solution for all those tasks is based primarily on content of the 
hash table described in Section 4.1. Effectively this hash table 
contains information concerning all non-empty cells that met 
criterion (1) and are within the bounding box for a camera 
frustum for previous observer position. Traversing a cell list for 
this hash table one may perform all update activities mentioned 
above. 
All cells in the list that are not contained by the current bounding 
box are erased from the hash table along with their corresponding 
triangular patches (if any) removed from isosurface mesh. 
Cells that do not satisfy (1) (patches implied) are replaced for 
their children or parent cells depending on increase or decrease of 
recommended detailing level by (1). 
Boundary conditions determined by a neighborhood with cells 
from another hierarchy level are cached in cell information in the 
hash table for easier detection of their changes. If such changes 
have place then cell’s triangles are dropped and new ones are 
created stitched with neighbor cells’ patches. 
Accomplishing update tasks means that both isosurface mesh and 
hash table is consistent with observer’s position and direction of 
sight, hash table is ready to handle future updates in observer 
parameters. 

5. VISUALIZATION OF DYNAMICALLY 
UPDATED VOLUME DATA 
Real-time visualization of dynamically changing scalar data may 
be employed to emphasize the dynamics of some monitoring or 
scientific simulation results. Another application area concerns 
usage of geometric environment constructed as isosurface for 
some time-dependent scalar function in a virtual reality system. 
Modifications of the source dataset have several follow-ups to be 
considered. Besides dataset modification itself they may require 
updates in simplified datasets for other levels of dataset hierarchy. 
It is not the case if those datasets are just a result of subsampling 
of the source dataset, but when they are obtained from original 
dataset by a low-pass filtering (like in [15]) then this filtering 
procedure must be applied once again. That filtering requires 
reasonable computational resources and results in noticeable time 
spent on it. That is why in our implementation filtering is not 
supported (yet). 
Another issue is related to necessity for updates in internal 
structures employed during isosurface construction and 

visualization. In our case those structures are bitmasks for each 
dataset hierarchy level and cells hash table if changes occur in a 
visible dataset part. Finally, updates in the dataset possibly cause 
modifications in an isosurface mesh. Once again it is a case only 
if visible portion of the dataset is modified. 
All those issues are considered by the following update 
procedure: completed dataset modifications make possible 
updating bitmasks for each dataset hierarchy level. During 
bitmask update the checking if a sample update in a dataset node 
requires corresponding update in a constructed isosurface mesh is 
eased by examining updates in the masks for each cell that 
contain this node. If mesh update is necessary and node is within 
visible dataset part then the hash table is used to lookup all non-
empty cells that contain this node and related triangular patches. 
All patches (and, correspondingly, the isosurface mesh) are 
updated according to changes in isosurface caused by sample 
modification in node. As this update procedure completes for each 
update in a dataset then both internal structures and the isosurface 
mesh reflects the actual dataset contents and may be employed for 
handling of the future updates in a dataset. 
Some inefficiency in this implementation comes from the 
consideration that update of a one dataset sample may require as 
many as eight cell updates. If neighbor samples are modified then 
cells that share them will be processed twice during update. To 
reduce this overhead it is proposed to cache dataset updates based 
on the spatial sample proximity and perform cell update for a 
bunch of dataset sample updates. 

6. RESULTS 
An implementation was employed as part of a hybrid volume 
modeling system [12,1] for fine-tuning of a model prepared on 
previous modeling stages. In our implementation user can 
interactively navigate and carve model when it seems fit. Fig. 3 
illustrates high-resolution synthetic model with several detailing 
presets – with no level-of-detail enabled and two intermediate 
settings. Model is reconstructed and visualized from 
256x256x256 dataset. Frame rates achieved were ranging from 3-
5 fps with LOD disabled and viewable volume dimensions of 
100x100x100 (64700 triangles per frame, Fig. 3a) to 40-45 fps 
with three levels of LOD enabled and same viewable volume 
(5900 triangles per frame, Fig. 3c) on Intel Celeron 300A machine 
with nVidia TNT graphics accelerator. This model was carved 
using a sphere carver with its radius and position controlled 
during carving. Modifications cover from 1% to 10% of the 
model’s viewable volume and do not cause substantial drop in 
frame rate making interactive carving possible. Carving results 
are illustrated on Fig. 3e.  

7. CONCLUSION AND FUTURE WORK 
This work employs multiresolution dataset hierarchy to make 
interactive level-of-detail isosurface visualization of scalar dataset 
possible. Usage of frame-to-frame coherence along with clipping 
the processing to a camera viewing frustum makes a difference of 
our approach from analogs. Reuse of existent isosurface geometry 
minimizes dataset processing during interactive navigation in it. 
Adaptive level-of-detail isosurface reconstruction based on 
multiresolution dataset hierarchy keeps polygon number in an 
isosurface mesh moderate for interactive visualization with 
sufficient detailing in surface areas close to observer. The 
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incremental mesh detailing updates performed as observer moves 
allow keeping mesh up-to-date at a little processing cost. 
Processing times for modifications in source dataset allow 
interactive visualization of the changes affecting up to 10% of the 
visible dataset volume. This renders interactive carving on the 
visualized isosurface possible thus making for our approach usage 
in an interactive volume modeling system. 
Issues that remain to be addressed are the high cost of isosurface 
threshold changes that is useful during interactive exploration of 
scalar datasets and employment of filtered datasets for coarser 
levels of dataset hierarchy that improves visual appearance of an 
isosurface extracted. Both are subjects of our future work on 
improvement of the approach. 
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Fig. 3a. Viewable dataset of dimensions 113x92x103 with
64706 triangles in reconstructed isosurface with LOD
disabled. Frame rate is about 6 fps. 

Fig. 3c. Viewable dataset of dimensions 113x92x103 with 
5911 triangles in reconstructed isosurface with 3 different 
levels of detail in it. Frame rate is about 45 fps. 

Fig. 3b. Viewable dataset of dimensions 113x92x103 with
21067 triangles in reconstructed isosurface with 2 different
levels of detail in it. Frame rate is about 16 fps. 

Fig. 3d. Solid shading view for the isosurface with 3 different 
levels of detail in it. 
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Fig. 3e. Interactive carving in the isosurface with 3 different
levels of detail in it. 

Fig. 3f. Overall view of the model visualized. Red line 
bounds fragment shown on previous figures. 
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