
Constructive Sculpting using 4D Spline Volumes

B. Schmitt∗

LaBRI,
University of Bordeaux,

France.

A. Pasko†

Faculty of Computer and Information Sciences,
Hosei University,

Japan.

C. Schlick‡

LaBRI,
University of Bordeaux,

France.

Abstract

This paper presents an approach to constructive modelling of FRep
solids defined by real-valued functions using Bspline volumes as
primitives. A 4D uniform rational cubic Bspline volume is em-
ployed to define a 3D solid. While the first three coordinates
are used to represent the spatial component of the volume to be
sculpted, the fourth coordinate is used as a scalar, which corre-
sponds to a function value or a volume density. Thus, the shape can
be manipulated by changing the scalar control coefficients of the
spline volume. This modelling process is interactive as the isosur-
face can be polygonized and visualized in real time. The distance
property we obtain, combined with the properties of the spline vol-
umes, allow us to use the resulting 3D solid as a leaf of a construc-
tive modelling tree and to apply to it set-theoretic, blending and
other operations defined using R-functions. Additional deforma-
tions can be achieved by moving arbitrary points in the coordinate
space and applying space mapping at any level of the constructive
tree. The final constructive solid is defined by a single real-valued
function evaluated by the tree traversing procedure.

Keywords: FRep, Implicit Surfaces, Volume Sculpting, Extended
Space Mapping.

1 Introduction

There are many different approaches to model complex shapes.
One of these approaches can be the decomposition of this complex
shape into a set of simple ones, called primitives, that are then com-
bined with different operations. This approach can be called con-
structive modelling with the corresponding geometric data structure
called a constructive tree. Each leaf of the constructive tree contains
a primitive while the inner nodes contain the operations.

The most known technique following this approach is Construc-
tive Solid Geometry (CSG, for short) developed during the 70s. In
CSG, primitives are restricted to solids with simple shapes such as
spheres, blocks, prisms and other regular shapes, and operations are
limited to set-theo-retic ones ( union, intersection, sub-traction) and
linear transformations. The main limitation of CSG is that it can
hardly be extended to a larger set of primitives or a larger set of op-
erations. A more recent technique following the constructive mod-
elling approach is the Function Representation (FRep, for short)
[7]. Here, the primitives are mathematically defined with the use
of a real-valued functionf , which has to beC0 continuous at any
point of the space. The points belonging to the primitive are given
by the inequalityf(X) ≥ 0, whereX is a vector of point coordi-
nates in the Euclidean space of any dimension. Any new primitive
can be easily added to this set by providing a real-valued functionf .
At the inner nodes of the constructive tree, any operation (blending,
set-theoretic, etc) yielding a real-valued function may be used. Nev-
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ertheless, building the constructive tree to generate a given shape is
usually time consuming and sometimes difficult.

In the field of geometric modelling, there is an alternative ap-
proach called interactive volume sculpting. The corresponding
techniques can be divided in two main families. In the first one,
the sculpting process is based on the deformation of an existing
shape [1]. In the second one, sculpting is done by adding or remov-
ing (carving) material. The main advantage of the second approach
is its intuitivity as it mimics a true sculpting process. An interest-
ing implementation of this approach has been proposed by Elber et
al. [9]. In this technique, the object is represented as a zero set of
Bspline volumes and the sculpting scheme offers multi-resolution
control and real-time visualization, which makes virtual sculpting
really intuitive and realistic.

A valuable approach would be to combine constructive modeling
and volume sculpting, because both approaches contain useful fea-
tures. Usually, a complex shape contains both regular parts that can
be easily decomposed into a set of primitives, and some other parts
more difficult to decompose but easier to model with a sculpting
tool. To combine these approaches, one has to define a primitive
than can be both sculpted and included in a constructive tree. To
add a new primitive to a FRep tree, one has to verify the previously
mentioned property (at leastC0 continuity of the function every-
where in the space.). In [9], the sculpting area depends on the space
where the parametric function is defined, i.e., it is restricted within
the boundary of the parameter space of the Bspline volume. As a
matter of fact, such definition makes it difficult to use the sculpted
object in another context, and especially to use it as a primitive.
A similar approach has been proposed for Bézier volumes in [10]
and extended to Bspline volumes in [11]. The main difference is in
the mathematical framework. The same parametric function is used
to define a solid, with the use of the inequality given by the func-
tion representation definition, but a so-called functional clipping is
employed so that the function gets negative outside the parameter
space. This ensures the function to take positive values only where
the sculptor chooses to create some material.

In this paper, we first propose to use the primitives defined in
[11], combine them in an FRep constructive tree and add some
new features to improve the interactivity of the virtual sculpting
tool, like a multiresolution scheme and a real-time visualization. In
the second step, complex shapes modelled with this process can be
combined with traditional primitives using different high-level op-
erations like blending or twisting. Furthermore, once a constructive
tree is built, one should be able to deform some parts of the whole
shape. So, we also propose to define a general deformation, close
to a carving scheme, where it becomes possible to move any point
of the object in the space and thus to define a space mapping.

2 Volume Sculpting

2.1 Definition

In this section, we recall some definitions given in [11]. As we men-
tioned above, a 3D solid can be generated by defining a trivariate
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scalar function F(u,v,w) and finding the points whereF (u, v, w) ≥
0. In our case, functionF is a trivariate cubic uniform Bspline de-
fined by a set ofl ×m × n scalar coefficientsλijk, called control
coefficients, that are placed on a 3D uniform grid. The correspond-
ing expression is:

F (u, v, w) =

l∑
i=0

m∑
j=0

n∑
k=0

Ni(u)Nj(v)Nk(w)λijk (1)

whereN(t) are the cubic Bspline basis functions [2]. According to
the definition, one has to understand that a control point is defined
in 4D space, where the first three coordinates are used to locate it in
the space, i.e. the usualxyz coordinates, and the fourth coordinate
contains the scalar coefficient. By editing the values of the control
coefficients, i.e. the last coordinate, the area where the functionF
gets positive can be changed and thus different shapes can be mod-
elled. In the remainder of this paper, we will call aBspline volume
the volume defined by the positive part of this scalar function (even
if this is not a Bspline volume in the sense of the spline literature).

This definition allows one to model complex shapes up to a cer-
tain limit. If it is used alone (i.e. is not mixed with other primitives)
the behaviour of the function outside the parameter domain does not
matter. But as we want to use it as a new primitive for a construc-
tive tree, it has to respect the FRep definition, that is to be positive
only in the domain of interest, and negative everywhere else. As the
Bspline volume is parametrically defined, its behaviour outside the
domain of interest is difficult to predict, and under some circum-
stances, may becomes positive and produces some ghost solids, as
Fig. 1 shows . To avoid this problem, we use a functional clipping
as proposed in [11].

  

Figure 1: On the left, ”ghosts” solids appear outside the domain.
After application of the functional clipping, they disappear.

We can force the Bspline volume, or more generally any func-
tion, to become negative outside a certain domain. In our case, our
interest turns toward the parameter space. It can be always con-
sidered as a unit cube with the use of some simple scaling oper-
ations. Then, the Bspline volume has to be negative outside this
cube. Thus, a functional clipping can be expressed as:

Fclip(u, v, w) = F (u, v, w)&Ω(u, v, w), (2)

With Ω(u, v, w) the unit cube, representing the parameter space,
defined as :

Ω(u, v, w) = Ω(u)&Ω(v)&Ω(w) (3)

whereΩ(t) = t(1− t) and& represents the intersection operation,
defined as :

g(u)&g(v) = g(u) + g(v)−
√

g(u)2 + g(v)2 (4)

The use of this intersection operation solves the discontinuity
problem that is encountered if one uses the more classical mini-
mum or maximum operation for this definition [7]. By applying

this intersection operation to the Bspline volume and the unit cube,
the resulting function will be negative outside the unit cube. Fur-
thermore, this operation provides a distance property of the Bspline
volume, the property that we will use later. This functional clip-
ping also allows a largest degree of freedom when modeling with a
Bspline volume. As a matter of fact, it becomes possible to change
the scalar coefficients lying on the boundary of the control grid.
Usually, those points are not modified in a wish of preserving a cer-
tain continuity, and edges are very difficult to obtain. By applying
the presented functional clipping, it become easy to obtain edges on
the border of a solid as it is shown in Fig. 2.

Figure 2: With the use of the functional clipping, it becomes easy
to get edges on a Bspline volume primitive.

2.2 Modelling with Bspline Volumes

Modelling an object with a Bspline volume involves changing of the
control coefficients. The modelling process we propose is achieved
by first selecting one plane of control coefficients (remember that
they are organised as a 3D uniform grid). In order to provide a
visual representation of the control coefficients, we draw each ver-
tex of the grid using a color chosen on the usual temperature color
scale (”hot colors” correspond to positive values, while ”cold col-
ors” correspond to negative ones, see Fig. 3). Using this color scale,
we are thus able to represent the 4D control coefficients. Some 2D
painting tools are then proposed to the user so that he/she can easily
change the values of the control coefficients. Increasing (decreas-
ing) the values means adding (removing) material in the solid. Fig.
11 presents a screenshot of the interface we implemented, where a
selected and already colored patch is presented. At the same time,
this patch is drawn in the rendering area, in order to localise the part
where the material is going to be added. As soon as a modification
occurs, the update and the visualization of the colored patch and of
the polygonized model is achieved in real-time.

To visualize the object, we polygonize the surface defined as
F (x, y, z) = 0. Many different algorithms have been proposed
for this task. We chose the polygonalization algorithm based on
hyperbolic arcs proposed in [8]. As in the classical Marching Cube
(MC) algorithm [4] exhaustive enumeration of the 3D grid cells is
applied, but instead of using a look-up table to generate the poly-
gons belonging to a given cell, this algorithm uses a trilinear inter-
polation inside the cell combined with a bilinear interpolation on
the cell faces, and resolves ambiguities using hyperbolic arcs. The
strength of the algorithm is that the polygonal model it generates is
always correct, while MC algorithms requires expensive correction
steps to solve all the ambiguity cases. In our implementation, with
the use of this algorithm, the shape is updated in real-time, which
leads to an interactive modelling tool.

One major weak point with Bspline volumes, is that modelling
a complex shape with a lot of details requires a huge number of
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Figure 3: Color scale for the function value.

control coefficients to deal with. Note that this problem also ex-
ists when manipulating classical polygonal meshes as well as usual
Bspline patches, and it has been widely studied in that context. One
ubiquitous solution - initially proposed by Parent in 1977 [5] - is to
hide the underlying control parameters (that may be mesh vertices,
spline control coefficients, or whatever) and show only high-level
sculpting tools to the user. More precisely, each tool is defined as
a filter that is applied to a whole set of control parameters. This
paradigm has been applied to zero-set surfaces defined by trivariate
scalar functions in [9]. The resulting method is very powerful but
may encounter problems in some cases. For instance, suppose we
want to model a teapot. The easiest way is to create first a body
without holes, and then create the holes by removing matter. If one
considers only the surface of the object, it may be difficult to cre-
ate this hole, because one cannot access to the inside part of the
object. In our implementation, we choose to keep direct access to
individual control coefficients, while allowing the use of high-level
painting tools to edit a cluster of coefficients as a whole. Moreover,
to enable manipulation of even a higher level, our implementation
includes two other modelling tools, a wavelet transform (detailed
below) and a constructive tree (detailed in the second section).

2.3 Wavelets Transform

Wavelets are a very powerful mathematical tool, that enables a de-
composition of a vector spaceV into several equivalent represen-
tations. At a given levelk, V will be described as a combination
of a body spaceV k and a detail spaceW k, in other words, the in-
formation stored inV is split betweenV k andW k, without any
loss. An introduction to the wavelet theory can be found in [12].
The process going fromV k andW k to V k+1 is called synthesis,
and the reverse process is called analysis. Both processes require
two linear filters:A andB for the analysis step,P andQ for the
synthesis one. Fig. 5 presents how to apply these filters to obtain a
multiresolution decomposition.

The vector space we use in our case is the cubic Bspline volume
defining functionF . Thus to apply the multiresolution scheme, we
simply have to define the four filtersA,B,P andQ (the details of
their calculation can be found in [12]).

Fig. 4 shows different steps of modelling a ”monster” using a
wavelet transform. First, the Bspline volume is defined with a grid
of 5× 5 × 5 control points (Fig. 4a), corresponding to the setV 1.
Then, a single refinement (synthesis step) is applied to generate the
setV 2; as it can be seen, the volume does not change (Fig. 4b).
Some scalar values are then changed in setV 2 to generate Fig. 4c.

Figure 5: Wavelet Transform. Analysis step (top) and Synthesis
step (bottom).

The same two steps (synthesis step and edition step) are then done
in spaceV 3 (Fig. 4d). Now, let us consider that the ”ears” of the
monster are too close to the arms. By applying a wavelet trans-
form (analysis step) and editing the coefficients at levelV 2, one
can change the position of the ears (Fig. 4e). If the ears are moved
far enough from the arms inV 2 when going back toV 3, the arms
are exactly recovered (Fig. 4f). The monster is now complete, with
the correct position for the ears and the arms, Fig. 4g shows the
result in 3D.

Multiresolution offers a valuable improvement of the modelling
process. The decomposition of a shape into different levels of de-
tail is intuitive to the user. Furthermore, it also avoids undesirable
swellings. For instance, modelling the example shown in Fig. 6
(a donut-like with a ball in the hole, and a column) with a single
Bspline volume may be very difficult without the multiresolution
scheme. On the left part of the Fig. 6, the whole solid was di-
rectly modelled at a high resolution. Such a process generates some
swelling artefacts on the column and small undesirable angles on
the donut. This is only due to the too large number of control points,
and the difficulties it causes in manipulation of them. On the right
part the donut, the column, and the ball were modelled at different
levels. This time, swellings and other artefacts are removed.

Figure 6: Modelling in a high resolution leads to some swellings.
A multiresolution solves this problem.

3 Constructive Tree

In this section, we propose to build a FRep constructive tree using
the function representation of geometric solids, and more especially
using the primitive proposed above. Actually, many primitives,
such as sphere, block, ellipsoid or convolution surfaces can be used
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Figure 4: Different steps (from a to f) of the modelling process of a ”monster” using multiresolution. The final result in 3D is shown on the
right.

with it, as well as many operations, such as set-theoretic, blend-
ing, twisting and others. A more complete description of available
nodes and leaves for this constructive tree can be found in [8]. In
the remainder of this section, we propose first to describe the hier-
archical refinement of a Bspline volume we use, similar to the one
proposed in [3] and [9]. Then we discuss a new transformation,
which can be used to modify the current model at any level of the
constructive tree.

3.1 Refinement: sum, union, blending

Refinement of a Bspline volume has been first introduced in [3] for
parametric spline surfaces. The proposed method consists of build-
ing a hierarchical tree of surfaces. Starting from a root surface,
sub-surfaces, called overlays are locally defined. Each overlay can
also be refined with new sub-surfaces of finer resolution, to generate
a tree of surfaces, where the resolution of each overlay is function
of the depth of the tree. This approach has been applied to Bspline
volumes in [9]. The principle is to use an octree to sculpt a model at
different levels of details. This feature is very useful. For example,
if one wants to model a teapot, he may first model the body of it, and
then, in a finer resolution the spout, the ear and the cover. To obtain
the whole model, a sum between sub-volumes is achieved during a
tree traversing process. To preserve a C2 continuity, in the case of
the cubic Bspline, the two first and last rows and columns of scalar
coefficients are set to zero. Even if this condition is enough to pre-
serve the continuity inside the resulting function during the overlays
addition process, the sum operation may lead to unexpected result.

Fig. 7 shows a simple example in the case of a 1D solid. The
first step is to model two segments AB and CD with a single Bspline
curve (Fig. 7a). Then, we operate a refinement in order to add an
another segment between them. This is achieved by adding an over-
lay (a Bspline curve as well). As it can be seen, on the extremities of
the sub-curve, the continuity is preserved, and it reaches smoothly
the main curve. The result of the sum between those two curves
is an 1D solid composed of three parts, AB, CD and EF (Fig. 7c).
Now, suppose that we want to translate the added part EF. As it can
be seen, if one applies a simple sum, this part disappears, and one
has to change the overlay value and by the way return to the mod-
elling process to change the scalar coefficient of the control points
(Fig. 7e). On the other hand, one can consider this overlay as a
curve by itself (Fig. 7b). Thus overlays can be used as a simple
primitive for an FRep tree, and a union can be applied to them. The
result is similar to the sum operation (Fig. 7d). But now, when the
overlay is translated, the expected result is obtained (Fig. 7f). The

function used for the union is similar to the one defined previously
for the intersection :

g(u)|g(v) = g(u) + g(v) +
√

g(u)2 + g(v)2 (5)

Fig. 8 presents a 3D example, namely a teapot modelled by us-
ing different operations. The sum operation (left) leads to a hole
inside the body of the teapot, whereas a union operation (middle)
preserves its shape. A light blending has been applied in the right
picture. It shows some material have been added to the junction
between the two parts, and produces a smooth transition.

3.2 Space Mapping

In this section, we propose to define a local deformation which
helps modify, for any given point, the shape defined by a construc-
tive tree. Such transformation may be applied at any level of the
constructive tree. For instance, if one considers a simple tree ob-
tained by a blending union of two spheres, it becomes possible to
transform the material added by the blend.

To define such transformation, let us first consider a simple trans-
lation. Letf be a defining function, and(dx, dy) a vector of trans-
lation. Then, the transformation is defined as :

T : f(x, y) → f(x− dx, y − dy) (6)

This operation is global (i.e., applied to the whole object). Now, let
us define the space mapping. Consider a 2D solid and the displace-
ment of a pointA toward a pointA′. To define a local deformation
centred around pointA, one has to respect the two following prop-
erties:

• (dx, dy) have maximum values atA′.

• (dx, dy) drops to zero when(x, y) is far fromA′.

Then, the linear displacementsdx anddy can be changed to two
functionsdx(x, y) anddy(x, y). Any bell-shaped curve respects
both properties. The following definition can be used:





ifγ > ε
x = x− e−γ × (xA′ − xA)
y = y − e−γ × (yA′ − yA)

else
x = x
y = y

(7)

where
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Figure 7: Difference between a sum and a union between two curves, in the case of a 1D solid.

    

Figure 8: Difference Difference between sum, union and blending. Extension to the 3D case. From left to right, the applied operation is sum,
union and blending.

γ =
(x− xA)2 + (y − yA)2

p
and p ∈]0, +∞[ (8)

As it can be observed, the displacement is maximum when the
considered point is placed onA′. We set explicitly the displacement
to zero when ( if greater than anε

′
, because our interest is only in

the ”bell” of the curve, and its other parts might introduced some
undesirable small positive value). Note that the point A is arbitrarily
selected, and thus, a space mapping can be defined for any given
point in the space. If one consider a set of displaced points, the
definition (2) becomes :

{
x = x−∑n

i=1
e−γ × (xA′

i
− xAi)

y = y −∑n

i=1
e−γ × (yA′

i
− yAi)

(9)

whereA andA′ are two set of n points, containing respectively
original pointsAi and moved pointA′i.

The parameterp is a real value given by the user, where it defines
the area of influence of the space mapping, (and thus the shape of
the ”bell”). Fig. 9 shows results for different values ofp in the
3D case. As it can be seen, different levels of deformation, local
or global, can be obtained. The base shape is an ellipsoid. Each
line represents a different value of the p parameter. The first row
represents the effect of the displacement of a single point inside the
solid, and the second row, the displacement outside.

For any given point in the space, one can apply this transfor-
mation. If more than one point is moved, then a sum of all the
displacements is applied.

One problem may raise if a point is moved too far from its origi-
nal position. Indeed, the parameter of the equation defines a radius

of influence of the point. If the point is too far, its potential may
not be sufficient to influence the original shape. To overcome this
problem, one may increase the value of parameterp, but the re-
sult will be a more global deformation. The solution we propose
is to build a stack of transformations, where small transformations
are sequentially applied. In our implementation, the object defined
by the constructive tree is first polygonized using the algorithm de-
scribed in the previous section. Then, to apply local deformation, a
vertex of the polygonal mesh is selected and moved to a new loca-
tion. Local re-polygonalization is then achieved in real time, up to
a certain limit (if parameterp is small enough). As it can be seen in
Fig. 10, this space mapping is comparable to a carving scheme.

4 Implementation

We have implemented an interactive modeller using Tcl/Tk for in-
terfacing and MAM/VRS [14] for graphics. In order to allow an
intuitive modelling process, we choose to design a single user in-
terface where all operations can be presented. With this interface,
one can:

• Sculpt an object with a Bspline volume.

• Add traditional primitives: spheres, blocks, ellipsoids, etc.

• Apply three kinds of operations: first there are usual affine
transformation (rotation, translation, scaling), second there
are set-theoretic ones (union, intersection, subtraction) and
blending versions of them, finally there are general deforma-
tions (twisting, tapering, stretching, space mapping, etc).
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Figure 9: Example of space mapping with displacement inside the
solid (left) and outside (right) with three different values ofp.

 

Figure 10: Application of the space mapping: an original teapot
and a carved teapot.

• Modify any node or leaf of the constructive tree at any time
during the modelling process (for instance, change the blend-
ing union parameters).

Fig. 11 is a snapshot of the modeller taken during a modelling
session. The window is divided into two main areas. The lower
one is the representation of the final object, evaluated by the tree
traversing procedure, the upper part contains the description of one
node or leaf belonging to the tree. This upper part can contain two
different kinds of information. If the selected object is a primitive
or a node, it contains the relevant parameters (for instance, radius
and center for a spherical primitive). If the selected object is a
Bspline volume, the upper part changes into a canvas containing a
set of control points. As it was mentioned previously, the sculpting
process of a Bspline volume is achieved by changing the control
coefficients belonging to the same plane. Thus, the user can select
such a plane before using some 2D painting tools to change the
values. As it can be seen in the figure, the upper right part contains
the visualization of this plane where the value of the control
coefficients are shown using a temperature color map. In a real
modelling process, this selected patch should appear in the lower
part, in order to locate where material is going to be added.

The resulting solid is shown in Fig. 14, and details of the back
side are shown in Fig. 13. The corresponding constructive tree
is presented in Fig. 12. It is composed of various objects and
operations :

•Ellipsoids (3) •Spheres (2)
•Block (2) •Bspline Volumes (11)
•Solid Noise • Blending / Union
•Others

Note that currently, only the sculpting steps are achieved in real
time during the modelling process. When one uses a blending op-
eration or applies a twist deformation, the amount of update it re-
quires is usually too large to offer real-time repolygonization (but it
is still done in less than 60 seconds for objects of an average level of
complexity). For instance, to generate the complex model presented
in Fig. 11, an80 grid has been used, and the polygonalization took
90 seconds on a Pentium 400MHz. In our implementation the ob-
ject can be saved as an HyperFun script to be used in the HyperFun
software environment [13]. This language is a high level language
supporting exchange of FRep models.

5 Conclusion

In this paper we have presented a new modelling technique for 3D
solids that mixes two usual modelling paradigms, namely interac-
tive sculpting and constructive modelling. The solids are defined
by a 3D scalar function evaluated by the tree traversing process.
The leaves of this constructive tree are given by 4D uniform ratio-
nal cubic Bspline volumes, which are combined using set-theoretic,
blending and other R-function operations. The shape can be ma-
nipulated by changing the scalar control coefficients of the spline
volumes. Additional deformations can be achieved by moving ar-
bitrary points in the coordinate space and applying space mapping
at any level of the constructive tree. The isosurface of the 3D scalar
function can be polygonized and visualized in real time to get an
interactive modelling tool.

We are currently adapting the interface of our system so as it can
by controlled by a Data Glove device. The ultimate goal is to pro-
pose a virtual sculpting environment where a sculptor can create an
object without changing (or changing as few as possible) the ges-
ture he is used to for his creative process. Another work currently in
progress, is to create a similar tool for solid texturing of 3D objects
[6].

References

[1] S. Coquillart. A sculpting tool for 3d geometric modelling.
Computer Graphics, Siggraph, 24:205–212, 1988.

[2] G. Farin.Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide.Second Edition, Academic Press,
1990.

[3] R.D. Forsey and R.H. Bartels. Hierarchical bspline refine-
ment.Computer Graphics, 22(4):205–211, 1988.

[4] W.E. Lorensen and H.E. Cline. Marching cubes : A high reso-
lution 3d surface construction algorithm.Computer Graphics,
Siggraph, 21(4):163–196, july 1987.

[5] R. Parent. A system for sculpting 3d data.Computer Graph-
ics, 11(8):138–147, 1988.

[6] A. Pasko, V. Adzhiev, and B. Schmitt.Constructive Hypervol-
ume Modelling. Technical Report TR-NCCA-2001-01, 2001.

[7] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function
representation in geometric modelling: concept, implementa-
tion and applications.The Visual Computer, 11(8):429–446,
1995.

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/



[8] A. Pasko, V.V. Pilyugin, and V.V. Pokrovski. Geometric mod-
elling in the analysis of trivariate functions.Computers and
Graphics, 12(3/4):457–465, 1988.

[9] A. Raviv and Elber G.Three dimensional freeform sculpting
via zero sets of scalar trivariate functions.Technical Report
CIS9903, 1999.

[10] B. Schmitt, A.Pasko, and V. Savchenko. Extended space map-
ping with b́zier patches and volumes.Implicit Surfaces ’99,
pages 25–31, September 1999.

[11] B. Schmitt, M. Kazakov, A.Pasko, and V. Savchenko. Volume
sculpting with 4d spline volumes.CISST’2000, 2:475–483,
September 2000.

[12] E.J. Stollnitz, T.D. Derose, and D.H. Salesin.Wavelets for
Computer Graphics : Theory and Applications.Morgan
Kaufmann, 1996.

[13] Url. HyperFun Web Site. http:://www.hyperfun.org.

[14] Url. MAM/VRS Web Site. http:://www.math.uni-
muenster.de/informatik/mam/.

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/



Figure 11: Snapshot of the GUI using concepts proposed in this
paper.

Figure 12: Constructive tree corresponding to the ”space spider”
(Fig 14).

Figure 13: Detail of the back of the Fig 14. It consists of an ellipsoid
modified by different space mappings.

Figure 14: 3D solid modelled by building a tree with simple primi-
tives and sculpted object using BSpline volumes.
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