
Representation of Real-life 3D Models by Spatial Patches

Denis V. Ivanov, Yevgeniy P. Kuzmin
Department of Mathematics and Mechanics, Moscow State University

Moscow, Russia

Abstract
The commonly used solution for real-life 3D model representation
is polygonal spatially consistent geometry, with texture, and,
optionally, bump or displacement maps attached. Although the
idea of displacement mapping is well known, there are just a few
approaches to its efficient implementation. In this paper we
present a technique that allows for efficient representation and
rendering of real-life 3D models by getting a new angle on the
displacement mapping concept. We introduce a new primitive that
is defined as the range image of a small part of the model’s
surface; therefore, it is called a spatial patch. The whole model is
just a collection of patches with no connectivity information
between them. Such a representation can be directly acquired by
3D scanning machinery, and stored in a compact uniform form. It
also allows for efficient visualization. In this paper we present
some aspects of spatial patch rendering technique that utilize
conventional z-buffer and benefit from modern features of
computing units. We also discuss our experience in representing
3D models by spatial patches, provide some practical results and
set up directions for future work. Our preliminary evaluation of
the technique makes us believe that spatial patch technology can
be efficiently used in a wide range of applications dealing with
real-life 3D data.
Keywords: Rendering Primitive, Displacement Mapping, Spatial
Patch, and 3D Model Representation

1. INTRODUCTION
Three-dimensional computer graphics has recently become
ubiquitous at the consumer level due to the creation of affordable
3D hardware accelerators. These accelerators, ranging from high-
end workstations to low-priced boards, are used for efficient
visualization of triangles, which have been traditionally
considered as a basic rendering primitive. Being very simple in
shape, triangles seem to have met the right balance between
descriptive capabilities and computational burden. Thus, the
exponential growth of computing power, observed by Gordon
Moore, is expected to allow for the rendering of 3D models of
much better quality at the same speed. However, processing
scenes consisting of a large number of small triangles leads to
certain problems, such as bandwidth bottlenecks and excessive
floating-point requirements [3]. A number of techniques have
been developed in order to overcome these limitations.
Texture mapping, originally proposed by Catmull [2], is now
supported by most of 3D engines. This technique makes it
possible to use larger and fewer triangles by filling polygon
interiors with colors taken from an attached image, called a
texture. Although this strategy allows for rendering more
naturally looking models at interactive speeds, it works
satisfactorily only for flat or slightly curved surfaces, such as
walls and tables, and often fails representing complex shapes. For

example, many objects in real-time games, which are considered
the “killer application” for 3D graphics, exhibit noticeable
artifacts revealing their polygonal nature.
In order to simulate the roughness of polygonal surfaces, a
technique called bump-mapping can be applied. Bump-mapping,
invented by Blinn [1], does not change the underlying geometry
of a model, but produces shading effects as if the polygons were
wrinkled. Obviously, additional computational efforts are required
to realize these effects, while they only seem to be helpful for
small variations of the surface that is observed from the close to
normal direction. However, the silhouette of a model remains
unchanged; besides, the human vision system, having
stereoscopic capabilities, is likely to recognize the proposed
deception at close distances.
Further improvement of bump-mapping leads to performing
actual displacement of surface elements in addition to appropriate
shading computation. Although this idea is simple and well
known, there can be found quite a few implementations in
literature. The proposed solutions are based on volumetric
textures [8], ray casting [9] or remeshing of the initial geometry
[4]. The latter technique seems to be the most amenable to
hardware acceleration; however, its output is a collection of
smaller triangles forming dense meshes based on original
polygons.
Obviously, polygonal representation of model geometry is not the
only possible solution. There exist a large number of others,
including implicit surfaces, NURBS, or subdivision surfaces,
which still require additional knowledge about material and
texture for realistic rendering. Besides, higher order primitives are
usually decomposed into triangles before being visualized by
graphics hardware.
Another important thing to discuss with respect to surface-based
representation is modeling. Since we usually require that
computer models look very much like real objects, accurate
acquisition of real-life 3D data is likely to be involved. Several
scanning technologies have recently been developed to the level
that allows archiving quite sufficient results [7]. Commercially
available 3D scanners, based on time-of-flight, structured light,
and other principles, produce point clouds or, more commonly,
regular depth fields with spatial resolution as small as fractions of
millimeter. Attached with a camera or 1D color sensor, this
machinery is capable of generating range images (images with
depth information for every pixel) at reasonable speed.
Unfortunately, further registration of multiple scans and
generation of a spatially connected, surface-based representation,
which is required for efficient rendering, takes a much longer time
and often degrades the acquired data.
Range images possess several important qualities. First, being
directly acquired by 3D scanning systems, they seem to be quite
natural for representing fragments of a surface. Second, the
corresponding data can be stored in a uniform manner, unlike
today’s practice where textures, bump maps, and geometry

GraphiCon'2001 188

information are usually stored separately. Finally, range images
have regular structure, which makes it possible to apply various
optimization techniques during rendering. Thus, they are
amenable to acquisition, storage, and efficient rendering.
Guided by these considerations, in [5] we first proposed a new
primitive for 3D model representation and rendering. This
primitive, called a spatial patch, is defined as a range image of a
small part of the surface taken in the direction close to the normal.
In this context, the whole model is just a collection of spatial
patches. No connectivity information between neighbor primitives
is required for such a representation.
In [5] we described in details one of the approaches to rendering
of spatial patches. This approach utilizes conventional z-buffering
strategy and is designed to benefit from advanced features of
modern processing units, including “single instruction multiple
data” (SIMD) operations and on-chip caches. In this paper we
highlight some of the important aspects of the proposed rendering
technique.
Since we had no 3D scanning machinery at our disposal, we
generated spatial patches from models represented by other
means, such as polygonal meshes and point clouds. In this paper
we also introduce some ideas that we used for development of the
conversion algorithms and discuss our experience in operating
with 3D models represented by spatial patches.
Our practical results showed that significantly magnified views of
models represented by spatial patches might experience some
artifacts in the areas where neighbor patches overlap. However,
the proposed representation proved to work very well for
rendering with screen resolution comparable to resolution of
range images treated as spatial patches.

2. DEFINITIONS
The concept of range image is well known in computer graphics
literature. It is usually defined as a raster image attached with per-
pixel distances from the viewing point to the surface. A spatial
patch is defined in the same manner as follows.
Given the model orthonormal coordinate system, a spatial patch
is defined by the origin point P, orthogonal frame (Δx,Δy,Δz), and
a rectangular m×n array of (c,d)i,j pairs, each representing a point
Ni,j=P+iΔx+jΔy+di,jΔz of color ci,j on a surface (Figure 1).

Om

Xm

Ym

Zm

model
coordinate

system

Δx
Δy

Δz
P

patch’s
coordinate

system

object’s
surface

Figure 1: Spatial Patch definition

It is important that all patches of a model are defined in one
coordinate system, referred to as model space. An orthogonal
frame (Δx,Δy,Δz) of each patch corresponds to its local coordinate
system, called patch space. We also define world space with the
origin placed in the eye and z-axis parallel to the viewing
direction, and screen space as the result of the perspective
projection. The world-screen transformation maps the viewing

frustum into an axis-oriented cube with the center at (0,0,0) and
sides equal to 2, as it is suggested in OpenGL [10].
In practice, we use the standard RGB888 format for color
representation and signed 8-bit integers for displacements, which,
in total, result in a 32-bit storage requirement for a node. Such a
low displacement precision makes sense if patches are relatively
small compared to the model; thus, only small surface variations
are expected. Pure black color is reserved for transparent nodes,
including those whose displacement falls out of the [-128,127]
range. If more accurate geometry or an alpha channel is required
we use RGBA (8 bits per channel) and 32-bit displacements,
thereby doubling the storage size. The origin point and the frame
of a patch are stored separately using floating-point numbers.

3. RENDERING WITH Z-BUFFER
In [5] we presented the logical structure of the rendering unit that
renders spatial patches generating appropriate data for z-buffer. It
should be mentioned that patches can also be rendered by means
of the standard graphics pipeline if they are considered as regular
meshes. This solution would involve neither texture- nor bump-
mapping, but would produce a large number of small triangles,
which usually leads to bottlenecks and high computational
requirements. Having this option in mind, we may think of the
proposed rendering unit as an extension to the commonly used
pipeline. As using the traditional rendering pipeline is optional it
is shown in gray on Figure 2.

Input: Spatial Patch

Discard

Visible? Clipping

Mode?

Nodes Traversal

Quadrilateral Rendering
only if necessary

Triangle Rendering
only if implicitly specified

Optimized Engine

Output: Z-buffer data

No Partially

Yes

Regular

Fast

Figure 2: Logical structure of rendering unit

The rendering unit (Figure 2) is designed as a sequence of stages,
which are executed sequentially to visualize spatial patches on a
displaying device.
In the first stage, the unit verifies the visibility of the spatial
patch, and discards it if the answer is negative. This is done by
checking the relative position of a bounding solid, i.e. box or
sphere, and the visible frustum. If partial visibility is determined,
the patch is recursively clipped by the frustum, and the residual
parts are considered new smaller patches. However, we would
like this condition to happen as rarely as possible because
clipping is relatively expensive operation; thus, we use the
common technique of allowing patches to extend outside the
viewing region by several percent, which significantly decreases
the probability of ‘partially visible’ event.
When the patch is guaranteed to lie within the visible frustum, the
decision is made on whether or not optimized techniques can be
used to render it, or whether a regular sequence of required

Nizhny Novgorod, September 10 - September 15, 2001 189

procedures should be executed. The importance of this decision is
based on the fact that under certain conditions some of the regular
procedures can be omitted without any influence to the result.
Thus, having detected these conditions, the rendering unit can
process the patch several times faster.
The regular procedures of patch rendering include two major
stages: nodes traversal and cell rendering. As the rendering unit is
designed to reproduce the original geometry of a patch, it should
find the projections of all nodes onto the screen. Seemed to be
computationally expensive from the first sight, this operation can
be efficiently implemented in practice exploiting the patch’s
properties of being small and having regular structure. These
properties make it possible to find perspective projection of the
patch’s bounding box and approximate node positions by trilinear
interpolation between its corners. Applying this strategy
drastically reduces the number of arithmetic operations by
omitting per-node perspective projection. The price that is paid
for speed increase is absence of perspective correctness within the
patch; however, for patches that are much smaller in size than the
visible frustum the distortion is not perceptible.
The node traversal stage ends up with screen coordinates of each
node, which can be directly placed into the z-buffer. However, the
question arises: What happens between the nodes? Obviously, if
magnification occurs, we expect to see gaps between visualized
pixels. Considering the patch as regular mesh, the task, then, is to
render its cells provided that the nodes have been already
rendered. The common solution would be to divide each
quadrilateral into two triangles, and flush them into the standard
pipeline. Leaving quality issues of this strategy aside, we run into
dealing with large number of small triangles, which leads to high
computational costs. In order to render the produced
quadrilaterals efficiently and more naturally from visual point of
view we proposed in [5] to apply the commonly used strategy of
subdividing the geometry recursively until the desired level of
accuracy is reached. There were proposed two schemes of
quadrilateral subdivision. The first one finds bilinear interpolation
between 4 cell corners, while the other one constructs smoother
surface that is C1-continuos over a patch. The bilinear scheme
requires no more than 1 addition and 1 bitwise shift per each new
node, while the smooth one requires about three times this
number of operations. However, for significantly magnified view
the C1-continuos interpolation leads to more good-looking
surfaces.
Shading can be implemented utilizing either Phong or Gouraud
approaches - the rendering unit can light patch’s nodes and
interpolate final colors within each cell, or it can interpolate
normals (bilinearly or smoothly) and perform per-pixel shading.
As reconstruction of a normal vector is a relatively expensive
operation, which involves cross product and normalization, it was
proposed to reconstruct normals in local orthogonal patch space
where much fewer arithmetic computations are required due to
patch regularity. In this case, the light sources should be
converted to patch space in order to light nodes properly.
The other technique that can significantly reduce the number of
computations required for normal reconstruction is buffering of
normal vectors once they are computed and reusing them during
further rendering. The fact that all patches of a model are likely to
have similar or equal |Δz|/|Δx| and |Δz|/|Δy| ratios increases the
probability for each normal to be computed many times, which
ensures a gain in performance. The price for this gain is the
allocation of memory, which can be as small as 512 Kb since

internal symmetries and some reduction in precision can be
exploited efficiently. If patches representing a model have various
configuration, which does not allow reuse of normal vectors, they
can be divided into groups considering similarities of their |Δz|/|Δx|
and |Δz|/|Δy| ratios. Then, normals buffering can be applied within
each group separately.
The technique that was proposed for optimized engine is based on
the determination of the fact that no magnification of patch’s cells
occurs during rendering. In such event, no quadrilateral
interpolation stage is executed. However, regular algorithm
verifies this condition for each cell separately, which requires per-
cell computations. On the other hand, it appeared to be relatively
cheap to detect those patches that do not require cell interpolation
on a per-patch basis. As the node traversal stage can also be
optimized for such patches they can be efficiently rendered by a
specially designed procedure.
It should be mentioned that the proposed rendering strategy for
spatial patches can be implemented using parallelism on different
levels. The SIMD (Single Instruction Multiple Data) approach can
be applied not only to coordinate triples or quads, but also to the
whole node data in many cases. Thus, for example, coordinates
and colors may be interpolated in the same manner in the
quadrilateral rendering stage. Significant increase in performance
is expected if additions and bitwise shifts on 6-tuples or 12-tuples
are executed in parallel by a single instruction. Besides, two
parallel computing units can be used for quadrilateral subdivision
process.
From the global point of view, each spatial patch is a separate
object that is expected to be relatively small. This property makes
it possible to divide the frame buffer into several rectangular
areas, often called chunks, and provide each one with a separate
rendering unit. This approach is highly efficient if patch clipping
caused by internal partitioning occurs rarely. Introducing small
internal guard bands can help a lot in this case.
Thus, the proposed rendering unit appears to efficiently exploit
the advantageous properties of spatial patches and, in practice,
proved to work quite well in simulators. More details on the
presented above techniques can be found in [5].

4. MODELS GENERATION
We had no 3D scanning machinery at our disposal; therefore, we
had to produce spatial patches by other means. As textured
polygonal 3D models are the most convenient for dealing with,
they were chosen as the major source data for production of
spatial patches.
There exist two general approaches to acquisition of spatial
patches from the models represented by their surfaces. The first
approach utilizes ray-tracing strategy in order to produce range
images; the second is based on surface analysis and selection of
the areas that are most suitable for conversion to spatial patches.
Although implementation of ray-tracing seems to be more natural
for simulation of range finders, it provides no control over
resulting range image (spatial patch), which may have
unpredicted discontinuities and gaps. Thus, our choice was in
favor of the second approach, which, in our opinion, could result
in more optimal partitioning into patches by utilizing connectivity
information of mesh elements. In retrospect, this strategy
appeared to have certain disadvantages, as well.

GraphiCon'2001 190

As we also wished to convert some models represented by point
clouds, which have no explicitly defined surface, we implemented
a simple algorithm based on production of range images from
them. Some details of this approach are discussed in Section 4.5.

4.1 Conversion Algorithm
The idea of the conversion algorithm is partitioning the surface of
a model, which is defined by a triangular connected mesh, into
fragments that can be represented efficiently by spatial patches.
The algorithm is implemented in three stages, which are creation
of preliminary areas, creation of secondary areas, and merging.
On the first stage an arbitrary face is selected and used as a seed
element from which the corresponding area is grown. Areas are
grown by adding adjacent faces iteratively, on each step selecting
the one whose normal deviate least from the normals of already
selected faces. The growing process stops if there is no adjacent
face such that the adjusted set of normals lies within a solid cone
of predefined size. By applying this procedure the whole surface
is partitioned into connected, relatively smooth submeshes.
These submeshes, then, can be converted to patches, since the
corresponding surfaces can be uniquely projected onto a plane
provided that deviation threshold for normals is set to a small
value. However, these areas usually have very complex blot-like
shape, and converting them into patches would result in
significant overlaps and data overuse.
In order to get areas of better shape, the central face of each
preliminary submesh is used as a seed element for the secondary
partitioning stage. On this stage the areas are grown
simultaneously yielding to a more convenient shapes.
In practice, we observed that better result may be obtained if
relatively small deviation threshold for normals is used on the first
two stages, and resulting small areas are then merged using
analogous strategy.

Figure 3: The 2 models represented by spatial patches

Using the described above algorithm, we converted large number
of polygonal models into spatial patches. Among them were the
well-known bunny, provided by Stanford University, and the
model of head mannequin, provided by Hugues Hoppe from
Microsoft Research (see Figure 3). Both models were not initially
textured, so we applied some kind of stone texture using standard
mapping utilities. Some statistics on the original and the produced
geometrical data is present in Table 1.

Table 1: Statistics on the bunny and mannequin models
 bunny mannequin

Number of nodes 34 834 40 289

m
es

h

Number of triangles 69 451 80 448

Number of patches 1 526 1 145

Number of nodes 441 014 330 905

s.p
at

ch
es

Data size (Mb) 1.83 1.37

4.2 Generation of the Earth Model
In this section we describe the process that was implemented in
order to generate the model of the Earth. We had no real data of
the Earth’s relief; therefore, we decided to make the model more
expressive to demonstrate the advantages of spatial patches. It
should be mentioned that the resulting relief is just a broad-brush
approximation of the Earth’s surface.
The first step was generation of the height map for the Earth’s
surface. We decided to estimate height from color of surface
elements. The ocean, which has dominating blue color, was kept
flat. The offsets of the land parts were divided into several levels
depending on the hue of the corresponding color – the green areas
were treated as plateaus, the brown ones as mountains. The
obtained height field was smoothened by standard image
processor, which treated height values as gray shades. The result
of this operation is shown on Figure 4 (black areas correspond to
the sea level, gray shades represent different heights above the sea
level).

a) The original texture of the Earth’s surface

b) Produced height map
Figure 4: Estimated height field of the Earth's surface

After the height map had been generated, the appropriate
polygonal model could be produced. The starting point was a
connected triangular mesh of about 40.000 triangles of similar
size which represented a complete surface of a sphere (Figure 5a).
Each node of this mesh was assigned with texture coordinates
according to the standard cylindrical projection of a rectangular
bitmap to a spherical surface (the texture on Figure 4a gave some

Nizhny Novgorod, September 10 - September 15, 2001 191

clues for cylindrical nature of the required projection). Then, each
node was displaced along the corresponding normal vector to the
value defined by its texture coordinates and the height map.
Bilinear interpolation between the 4 nearest height map elements
was used to produce the final displacement.
The resulting mesh along with the corresponding texture was
provided to the conversion algorithm described in Section 4.1.
The 3 models of different resolution were produced in order to
evaluate descriptive power of spatial patches with respect to their
density. The algorithm was set to extract patches of 17×17 nodes
in size, and the resulting models consisted of 383, 1128, and 2712
separate patches. Figure 5b shows the model of 1128 patches
visualized with the rendering engine described in Section 189.
More close view of the top of the globe, which demonstrates that
the land parts are actually raised above the sea level, is shown in
Figure 5c.

c) Zoomed in part of the surface

a) Mesh of a spherical surface b) Produced spatial patches
Figure 5: The model of the Earth

Table 2 summarizes some statistics on the produced models.
While the original triangular mesh of a sphere consists of about
40.000 nodes, the produced patches have several times greater
number of nodes in total. One may say that neighbor patches
should overlap in order to represent consistent surface; however,
the produced models are expected to demonstrate more dense
geometry. The bitmap that was used as a texture for the surface is
1024×512 pixels in size, which requires 1.5 Mb for True Color
24bpp representation. As many pixels were actually projected to
single nodes in polar areas of the globe, Earth_1128 model seems
to comprise nearly all the initial data from visual point of view. In
practice, we could not find any noticeable difference between the
original model and Earth_1128 rendered from reasonable
viewpoints.

Table 2: Statistics on the Earth models
Name # of

patches
of nodes Data size (Mb)

Earth_383 383 110 687 0.45

Earth_1128 1 128 325 992 1.35

Earth_2712 2 712 783 768 3.17

4.3 The Perfect Sphere
The concept of spatial patches was proposed for efficient
representation of real-life bumpy objects; however, it has enough
descriptive power for accurate representation of artificial surfaces,
as well. To prove this fact, we generated a collection of spatial
patches corresponding to a complete spherical surface of radius
equal to 128 units. This model was called a ‘perfect sphere’.
To build up the model, we selected 1362 almost evenly
distributed points on the surface utilizing spherical coordinates.
At each point we then reconstructed a spatial patch, which had z-
axis collinear to the normal to the sphere, and the lengths of the
local frame vectors (Δx,Δy,Δz) equal to 1, 1, and 0.01, respectively.
Displacing the nodes according to the formula of a sphere, we
obtained a model of a complete surface.
The displacement precision in the patches is 0.01; therefore, it is
expected that being rendered on a screen of about 25000×25000
pixels in size, the model would look as if it had been visualized
using the explicit definition. The displacements are represented
with 8 bits, and the patch’s frame can be defined by 40 bytes (10
floating point numbers), which, in total, result in less then 440 Kb
of data. The conventional triangular mesh representation with
such accuracy would take much more space to be stored.

4.4 Holes on Sharp Edges
The problem that we ran into while representing several models
by spatial patches is possible appearance of small gaps between
two surfaces having common curved edge. This problem has the
same nature as aliasing effect for raster shapes. Indeed, given a
flat disc in model space (Figure 6a), the corresponding spatial
patch will naturally have z-axis collinear to disc’s normal, and the
nodes whose (x,y) coordinates lie within the disc will be set to the
corresponding value, while all other nodes will be left transparent.
During rendering the quadrilaterals that have at least one
transparent node are not rendered resulting in aliasing effects on
edges (Figure 6b). This effect can be partially dealt with by
interpolating alpha channel within semi-transparent quadrilaterals
or by increasing patch resolution; however, the perfect circular
shape cannot be represented.

x

y

z

a) representation of a disc by
spatial patch

b) rendered disc
(low resolution, no alpha)

Figure 6: Accuracy of shape representation
Unfortunately, the described above effect takes place in a large
number of artificial models originally represented by polygons.
The simplest one is the cylinder shown on Figure 7. Increasing
patch density to the level of screen resolution would remove the
holes; however, there would be a huge number of wasted nodes
lying on the flat parts of the model in this case. The proposed
solution that we used to overcome the problem is detection of the

GraphiCon'2001 192

sharp edges and generation of small patches that have
intermediate orientation with respect to the faces adjacent in the
selected edges. These patches should be of higher resolution
compared to the other ones since they represent more complex
geometry. The additional patches and the corrected model of a
cylinder are shown on Figure 8.

Figure 7: Holes on sharp edges

a) additional patches on edges b) the resulting model

Figure 8: The corrected model of a cylinder

4.5 Dealing with point clouds
Point clouds do not have explicitly defined surfaces, and building
surfaces from them seems to be a complicated task; therefore, the
conversion algorithm discussed in Section 4.1 cannot be applied
to such representation. For this reason, we implemented simple
strategy that is based on acquisition of large range images from
the cloud. The algorithm produces several range images from the
angles usually evenly distributed on a unit sphere, and extracts
rectangular regions that can be efficiently represented by spatial
patches. Production of a range image in this case is implemented
by flushing all points into z-buffer.
As the source data is a collection of separate points, its image in
z-buffer may have certain gaps. We tried to setup parameters of
the rendering viewport so that the appearing gaps were not larger
then 1-2 pixels, and then filled the gaps by interpolating the z
coordinate of neighbor elements. In addition, it was sometimes
useful to apply some kind of smoothening filters to the range data
stored in z-buffer since point clouds acquired by range finders
often had certain noise.
One of the models that were converted from point cloud
representation is the head shown on Figure 9. The corresponding
point cloud was provided by Max-Planck-Institute for Computer
Science, where it had been acquired by a 3D range finder. The
number of produced nodes is actually less than the number of
original points in the cloud. The surface appears to be bumpy,
which probably reflects the details of the original bust; however,
spatial patch representation proved to represent it sufficiently.

of original points 915 498

of patches 837

of original points 915 498

of patches 837

of nodes 361 244

Data size (Mb) 1.43

Figure 9: Head model

5. PRACTICAL RESULTS
In order to evaluate the proposed 3D model representation, we
implemented the rendering algorithms based on z-buffering
approach in the scope of the spatial patch rendering unit
simulator. Its primary objective was to collect as much statistics
as possible; thus, it was not designed to make use of any
particular CPU architecture. The simulator stores all statistics in
plain HTML format, which can be visualized in bars and
diagrams by our custom-made viewer.
Some of the scene characteristics as well as rendering statistics
are shown in Table 3. All models were rendered in a 500×500
pixel viewport by the rendering unit simulator. The two bottom
rows show how many normal vectors were actually computed (as
a percentage of the total number), if a buffering technique and
pre-ordering of patches within a scene were applied. Thus, patch
ordering results in dramatic increase in performance. We have to
note that if all patches have identical configuration, i.e. they are
produced by calibrated scanning device, then the table of normals
can be pre-computed, and used for all patches, which reduces the
number of normal computations to zero.

Table 3: Model characteristics and rendering statistics
 bunny man. earth head
Patch nodes 441 014 330 905 325 992 361 244
Interpolated nodes 1 076 888 863 600 541 462 263 589
Norm. w/buffer 76% 76% 55% 46.6 %
Norm. w/b, ordered 2.8 % 3.7 % 1.9 % 18.2%
Figures in the interpolated nodes row of Table 3 shows that the
models were actually magnified when rendered in the 500×500
pixel viewport. For this reason, the global test, described in
Section 3, determined no patch as being suitable for optimized
rendering in the given configuration. When the viewport was
narrowed to 150×150 pixels, then about 85-95% of all patches did
not require interpolation, and 45-85% of them passed the
criterium and were rendered by the optimized procedure. Thus, on
average, the criterium eliminated nearly half of the occurrences
while it is computationally cheap. However, more accurate, but
more expensive, tests may be used, as well.
The rendering unit is also capable of rendering triangles by
conventional scan line algorithms that is used in most of the
graphics boards and APIs. Thus we could render each patch by
conventional means, dividing each quadrilateral cell into two
triangles. A statistical analysis showed that for the presented
models and viewing configurations the average number of
operation required in triangular mode is double the number of
operations required for bilinear interpolation. That proves the fact
that rendering of many small triangles leads to high computational
requirements, since in our case the triangles were actually several
pixels in size.

Nizhny Novgorod, September 10 - September 15, 2001 193

6. CONCLUSION AND FUTURE WORK
In this paper we discussed some aspects of using spatial patches
for 3D model representation and rendering. This primitive is
based on the well-known concept of range image; however, each
patch is expected to represent a small, relatively smooth fragment
of a model surface for better performance. The proposed strategy
unites the techniques such as texture and displacement mapping in
one concept, for which it is thought of as highly efficient for
model representation.
We presented the logical structure of a rendering unit for spatial
patches. Based on the conventional z-buffer, it is designed to gain
maximal benefit from spatial patch regularity and uniformity. It
can be efficiently implemented using currently available hardware
solutions, such as SIMD instructions and on-chip fast cache.
However, even more increases in performance are expected if
more features amenable to parallel computing are available.
Since neighboring spatial patches of a model are not spatially
connected, noticeable artifacts may appear in the areas where
several patches overlap if significant magnification occurs. This
effect is mostly caused by low (8-bit) displacement precision that
we used in our models and perspective incorrectness of
interpolation. Such magnified views require more dense patches
for accurate visualization.
Therefore, spatial patches are best suited for visualization with
nearly the same scale as they were captured. Minification can also
be supported by various filtering techniques similar to mip-
mapping. The particular implementation is beyond the scope of
this paper and is regarded as future work.
The other problems that are not discussed in this paper are anti-
aliasing and backside culling. Aliasing effects can be dealt with
by common supersampling strategies. The only solution for
culling seems to be storing some kind of a bounding cone for
patch surface and disregard patches that have their cones point
away from the eye. However, there might be better solutions.
The direct rendering strategy with the z-buffer is not the only one
that can be applied efficiently to spatial patches. In [6] we
describe our experience in implementing ray-tracing approaches
for the proposed representation. The results proved that spatial
patches have many advantages, including regular structure and
small size, which are quite important for efficient rendering by
this type of techniques.
We have not yet paid attention to data compression for scenes
represented by spatial patches. As the corresponding data stream
may exhibit certain redundancies caused by displacement and
texture similarity, various compression techniques might be
applicable efficiently. Some progressive approaches might be
used, as well.
In conclusion, we consider spatial patch as a primitive that is
natural for 3D scanning, since no post-processing is basically
required. The scenes represented by spatial patches often require
less storage space than polygonal models with textures of the
same quality. Rendering approaches, direct (z-buffer) and realistic
(ray tracing), can be implemented efficiently benefiting from
existing and future hardware solutions. Therefore, the introduced
concept can be used in many applications dealing with real-life
3D graphics.

7. ACKNOWLEDGEMENTS
This work was carried on by Computer Graphics Group at the
Mathematics Department of MSU under research agreement with
Intel Technologies, Inc. We thank Jim Hurley and Alex Reshetov
(Intel Technologies, Inc.) for their constant interest in this work.
Authors also thank Alex Yakovlev, Victor Lempitsky and Genya
Belkov for development of rendering unit simulator and model
converters. We are grateful to Hugues Hoppe (Microsoft
Research) for allowing us to use the mannequin data set, and to
Leif Kobbelt (Max-Planck-Institute for Computer Science) for
providing us with the head point cloud. The bunny model is the
courtesy of Stanford University.

8. REFERENCES
1. J. F. Blinn. Simulation of wrinkled surfaces. Computer Graphics

12(3), pp. 286-292, 1978.

2. E. E. Catmull. A Subdivision Algorithm for Computer Display of
Curved Surfaces. Ph.D. thesis, University of Utah, Salt Lake City,
December 1974.

3. M. Deering. Data Complexity for Virtual Reality: Where do all the
Triangles Go? IEEE Virtual Reality Annual International Symposium
(VRAIS), pp. 357-363. Seattle, September 1993.

4. S. Gumhold, and T. Hüttner. Multiresolution Rendering With
Displacement Mapping. Proceedings of the 1999
Eurographics/SIGGRAPH workshop on Graphics hardware, pp. 55-
66, 1999.

5. D. Ivanov, and Ye. Kuzmin. Spatial Patches – A Primitive for 3D
Model Representation. Computer Graphics Forum (Proc. of
Eurographics’01), 2001.

6. V. Lempitsky, D. Ivanov, and Ye. Kuzmin. Adaptive ray tracing on
spatial patches. In this proceedings, 2001.

7. Mark Levoy et al. The Digital Michelangelo Project: 3D Scanning of
Large Statues. ACM Computer Graphics (Proc. of
SIGGRAPH’2000), pp. 131-144, 2000.

8. F. Neyret. Modeling, Animating, and Rendering Complex Scenes
Using Volumetric Textures. IEEE Transactions on Visualization and
Computer Graphics, 4(1), pp. 55-70, January 1998.

9. J. W. Patterson, S. G. Hoggar, and J. R. Logie. Inverse displacement
mapping. Computer Graphics Forum, 10(2), pp. 129-139, June 1991.

10. M. Woo et al. OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1.2. Eddison-Wesley Pub, 3rd ed., 1999.

About the authors
Dr. Denis V. Ivanov, Scientist – Denis@fit.com.ru
Dr. Yevgeniy P. Kuzmin, Senior Scientist – Yevgeniy@fit.com.ru
Computational Methods Lab.
Mathematics and Mechanics Dept.
Moscow State University,
Vorobyovy Gory, Moscow, Russia, 119899

GraphiCon'2001 194

mailto:Denis@fit.com.ru
mailto:Yevgeniy@fit.com.ru

	1. INTRODUCTION
	2. DEFINITIONS
	3. RENDERING WITH Z-BUFFER
	4. MODELS GENERATION
	4.1 Conversion Algorithm
	4.2 Generation of the Earth Model
	4.3 The Perfect Sphere
	4.4 Holes on Sharp Edges
	4.5 Dealing with point clouds

	5. PRACTICAL RESULTS
	6. CONCLUSION AND FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

