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Abstract 
Despite their long history, radial basis functions have never really 
become a widely used tool for surface generation and 
image/surface modifications. This paper presents work in 
progress, and continues a project devoted to developing a system 
for shape modeling based on implementation of RBF technology. 
Experimental results are included to demonstrate the functionality 
of our mesh-modeling tool. In particular, we consider such 
applications as surface reconstruction,  surface retouching,  
animation, and shape smoothing. Also we discuss an algorithm 
for local mesh generation and polygon simplification. 
 
Keywords: radial basis functions,  reconstruction, surface 
modification. 

1. INTRODUCTION 

A challenging goal in computer graphics (CG) and computer 
aided design (CAD) is to provide powerful technique for 
modeling the shape of an object. Indeed, when we are using only 
generic properties such as position of a point of the object that is 
deformed the problem of constructing smooth surface satisfying 
certain constraints can be formulated as a mapping function from 
R3 to R3. Such a space-mapping technique based on RBFs is a 
powerful tool, which offers simple and quite general control of 
simulated shapes. In fact, a model of extended space mapping [1] 
is used and incorporates geometric space mappings and function 
mappings from R3 to R. Constructive solid geometry (CSG) is 
usually used in many CAD applications. Traditionally, CSG 
modeling uses simple geometric objects for a base model, which 
can be further manipulated by implementing a certain collection 
of operations such as set-theoretic operations, blending, or 
offsetting. The operations mentioned above and many others have 
found quite general descriptions or solutions for geometric solids 
represented as points (x,y,z) in space satisfying f(x,y,z) ≥ 0 for a 
continuous function f. Radial basis functions (RBFs) offer a 
mechanism to obtain extrapolated points of a surface for various 
parts of a reconstructed object that can be used as “CSG 
components” to design a volume model. Nevertheless, we mainly 
consider RBFs as a tool for surface modifications based on a 
mapping from R3 to R3. 

2. OVERVIEW  

In spite of a flurry of activity in the field of scattered data 
reconstruction and interpolation, this matter remains a difficult 
and computationally expensive problem. A vast amount of 
literature is devoted to the subject of scattered data interpolation 
methods and their applications, see, for instance 
[2][3][4][5][6][7]. However, the required computational work is 
proportional to the number of grid nodes and the number of 
scattered data points. Special methods to reduce  processing time 

were developed for thin plate splines and discussed in [8][9], see 
also recent publications [10][11][12].  

 
Here, we shall give a short account of the shape transformation 
method used in the applications considered in this paper. To 
interpolate the overall displacement, we use a volume spline 
based on Green's function,  for more references, see [13]. This is 
well known problem - to find an interpolation spline function u ∈ 
W2

m(Ω), where W2
m(Ω) is the space of functions whose 

derivatives of order ≤ m are square-integrable over Ω ⊂ Rn, such 
that the following two conditions are satisfied: (1) u(pi) = hi,,  i = 
1,2, . . . ,N, and (2) u minimizes the bending energy, if the space 
transformation is seen as an elastic deformation. For an arbitrary 
three-dimensional area Ω, the solution of the problem is well - 
known: the volume spline f(P) having values hi at N points Pi is 
the function   

f(P) = ∑
=

N

j 1

γjφ (|P -  Pj|) + p(P),   (1)         

where p = ν0 + ν1x + ν2y + ν3z is a degree one polynomial. To 
solve for the weights γj we have to satisfy the constraints hi by 
substituting the right part of equation (1), which gives  

hi = ∑
=

N

j 1

γjφ(|Pi -  Pj|) + p(Pi).       (2)  

Solving for the weights γj and ν0,ν1,ν2,ν3  it follows that in the 
most common case there is a doubly bordered matrix T, which 
consists of three blocks, square sub-matrices A and D of size N × 
N and 4 × 4 respectively, and B, which is not necessarily square 
and has the size N × 4. 

Since the RBF φ(r) is not compactly supported, the corresponding 
system of linear algebraic equations is not sparse or bounded. 
Storing the lower triangle matrix requires O(N2) real numbers, and 
the computational complexity of a matrix factorization is O(N3). 
Thus, the amount of computation becomes significant, even for a 
moderate number of points. Wendland in [14] constructed a new 
class of positive definite and compactly supported radial functions 
for 1D, 3D and 5D spaces of the form φ(r) = ( )rψ , 10 ≤≤ r ; 

1,0 >r , where ( )rψ  is a univariate polynomial whose radius 
of support is equal to 1. Thanks to the efficient octree algorithm 
proposed in [15], the resulting matrix is a band-diagonal matrix 
that permits handling of large data sets in a reasonable time. 
A space-mapping in Rn defines a relationship between each pair 
of points in the original and deformed objects. Nevertheless, 
heights hi, are not necessarily arbitrary points of Euclidean space 
En. Our approach presents an attractive possibility of using 
function mapping for controlling local deformations by placing 
arbitrary control points inside or outside an initial implicitly 
defined object G, and they are assumed to belong to the surface of 
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a modified object Gm. Thus, the control points define the 
deformation of G resulting in Gm. 

3. APPLICATIONS 

3.1 Surface reconstruction 
 
A vast volume of literature is devoted to the subject of scattered 
reconstruction and interpolation, see, for instance, an overview in 
[15]. Methods exploiting RBFs can be devided into three groups. 
The first group is “naïve” methods, which are restricted to small 
problems, but they work quite well in applications, dealing with 
shape transformation. The second group is fast methods for fitting 
and evaluating RBFs [11]. The third is compactly supported 
RBFs.  Let us notice here about recent outstanding work of 
Ohtake et al. [16] where compactly supported radial basis 
functions (CSRBS) are used as blending functions.   The 
significance of this work is that the method proposed enables 
obtaining high quality reconstruction results and handle realistic 
amounts of data.  

 
Figure 1: “Seashell” CSRBFs surface reconstruction where 
sphere as a “carrier” function is used. Number of points: 917. 
Processing time: 0.56 sec. (includes surface extraction time: 0.41 
sec). 
 
The application shown in Fig. 1 (an example of reconstruction of 
implicit surfaces (CSG object)) demonstrates applicability of an 
extremely simple approach proposed in [7] that allows us to attain 
rather acceptable results. In our software implementation, we 
employ a standard approach for creating a binary tree from an 

initial point data set with an additional required parametric value 
K, which denotes the maximum number of points in a leaf. Such a 
tree allows to provide an efficient sorting of scattered data [15] 
that leads to obtaining a band diagonal sub-matrix A; after that 
Cholesky decomposing and block Gaussian solution are applied, 
as it was proposed by George and Liu in [17].  
 
3.2 Hole filling 
 
Point sets obtained from computer vision techniques are often 
non-uniform and even contain large missing areas of points. 
Another source of such a data, for instance, is partly destroyed 
natural objects, for instance, such as teeth that need a treatment. 
Three approaches to reconstruct missing parts have been 
dominant in the CAD area: the first one works with 3D polygonal 
models to stitch damaged or incorrectly calculated nodes of 3D 
geometric objects, the second one is an approach dealing with 
fitting of the data generated according to some geometrical 
features such as curvature, and the third one is actually based on a 
well-founded mathematically set-level approach. Partial 
differential equations are widely used to model a surface subject 
to certain constraints.  
Another way is to apply space mapping technique based on the 
use of RBFs, for more references, see [18]. In the application 
shown in Fig. 2, the optimization task is to find a functionally 
transformed occlusal surface (an inlay part) of a model tooth that 
best matches the remaining occlusal surface of a treated tooth. 
Actually, this approach can be called  “cloning”. We suppose that 
RBFs are suitable for sufficiently moderate 3D data sets. 
Nevertheless, they possess many features that make them very 
attractive for CAD applications dealing with modification of 
geometric objects, see [19], where occlusal surface modeling for 
restorations, based on jaw articulation simulation was used as 
shown in Fig.3. Fig. 3(a) shows the complexity of the surface of 
teeth, which are the subject of correction. Requirements of 
avoiding of interpenetrations with the opponent teeth and 
preserving main topological features of the occlusal surface of 
teeth are imposed on design of the occlusal surface of restoration. 
Arbitrarily placed points (Fig. 3(b)) induced by the distance 
distribution are used to control 3D occlusal surface deformations 
by RBFs.  

 

      
(a)                     (b)                        (c)                          (d)                        (e)                     (f) 

Figure 2: (a) Model tooth. (b) Tooth to be treated. (c) Approximation area (extended, pre-set boundary. (d) Treated tooth after application 
of genetic optimization. (e) Treated tooth after final refinement based on RBFs. (f) Resulting approximated CSG object. 
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(a)                                  (b) 

Figure 3: (a) Surface of teeth. (b) Distance maps of collision 
removal by applying RBF mapping function. 
 
In [20] an approach to hole filling of polygonal data was 
proposed. The algorithm includes holes extraction step, polygon 
stitching, and a hole surface improvement based on space-
mapping technique. For sufficiently small holes, polygon stitching 
based on the use of dynamical programming demonstrates quite 
good results as it can be seen in Fig. 4.  
 

(a)   

 
                                                                        (b) 

 
Figure 4:  Example of surface retouching of a real polygonal 
model. (a) “Stoned” model (courtesy  of  R. Scopigno and M. 
Calliery of Institute CNUCE). Model size – 88478 points. Red 
lines show hole areas. (b) Model after surface retouching.  
 

To illustrate the applicability of the space-mapping technique 
(third step of our algorithm) to the surface-retouching problem, 
we first show an example of image inpainting in Fig. 5. 
 

  
 

Figure 5: Example illustrating image inpainting approach. 
“Wool”, one additional sloping scratch was added to the test 
image from [21]. Processing time: 0.1 sec.  
 
The principal contribution of the approach is a surface –
retouching algorithm based on a local approximation of missing 
data. Example in Fig. 6 demonstrates the applicability of the 
approach for a rather complicated geometric object with 16 holes 
and the result of completely automatic reconstruction of the 
missing parts of the object. Let us note that regions where one-to-
one mapping or neighborhoods that are not homeomorphic to a 
disc can be observed in this example.  

 
Figure 6: Solution based on CRRBFs.  (1) Original model 
“Port6” (19467 polygons) contains 16 holes. (2) Prediction of the 
surface inside the holes area – triangulation (left) and linear 
subdivision of the triangulated surface (right). (3) Result of  the 
extrapolation for the holes area. Total processing time 7.1 sec. 

 
3.3 Surface smoothing 
 
The approach discussed above shows the obvious relationship 
between the surface-retouching problems and shape smoothing. 
Fig. 7 presents an example of compactly supported RBF 
smoothing of polygonal surfaces. The shape-smoothing algorithm 
exhibits, in practice,  good features and volume-preserving 
properties. 
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(a)                        (b) 

Figure 7: (a) The original noisy sphere “Epcot” model, (770 
vertices, 1536 polygons), (b) smoothed model after 5 iterations 
based on 11-point interpolation. Processing time: 0.6 sec. 

 
3.4 Real time facial animations 
 
3D geometric modeling systems based on shape deformations 
have been pursued by many researchers and take mainly 
advantage of the simple idea that tangible geometry of 
deformations can be defined by the user assigned starting and 

destination points. Probably this approach firstly was 
implemented in the papers of Wolberg [22]  and Beier and Neely 
[23] for 2D morphing.  
For real-time applications computing of the transformations is the 
most critical part in the sense of time optimizations. Fig. 8 shows 
an example of facial animations by compactly supported RBFs. 
For every point, which is inside the radius of support distance is 
calculated one time and after that space transformations are 
calculated in accordance to a phase parameter (value varies from 
0 to 1) that defines total deformation  [24].   The deformation 
process is regarded as taking place step by step so that the 
transition from a known state to a new state takes place with small 
increments in deformations. That is, intermediate transformations 
for every step of animation are generated according to the phase 
parameter. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8: An example of facial animations (7024 polygons, deformation defined by 32 vectors, radius of support is equal to 0.2): (a) – 
original model, (b) – “smile”, (c) – “upset”, (d) – “kiss”. Processing time: 107 fps. 

 
3.5 Mesh generation 
  
Surface reconstruction methods can be broadly classified into 
global and local approaches. From our point of view, methods 
based on the idea of local reconstruction are promising in CAD 
and CG applications dealing with huge amounts of scattered data.   
The partition of unity method (PUM) for the construction of 
interpolation and approximation was pioneered by Shepard [25] 
and was later  extended by Franke and Nielson [2]. In recent 
years, it has received much attention due to the works of Melenk 
and Babuska [26] and Krysl et al. [27].  
Shepard’s approximation on a set of scattered points x of domain 
Ω is as follows:  

uh(x) = ∑
=

N

I 1

ωI(x) uI  , 

where uI are the nodal parameters, and ωI(x) are the basis 
functions of compact support. They are constructed from weight 
functions W I(x) by means of the formula 

ωI(x) = W I(x)/ ∑
=

N

k 1
W k(x). 

The CSRBF  is used as a weight function 

W I(x) =




>
≤≤+−

1,0
10),14()1( 4

r
rrr , 

where r = x – xIis the Euclidean distance between an 
interpolated point and an input point, and N is the number of 
points in a predefined area. Other choices of the weight function 
are also acceptable; however, theoretical proofs can be given to 
show that, to achieve extrapolation efficiency, weight functions, 
with small third derivatives should be used. 
A general cover construction algorithm or partition of the domain 
Ω into overlapping rectangular patches ωI to cover the complete 
domain has to be used. Let us note that our main premise is to 
take account of a surface variation σ (an analog of surface 
curvature) that might be useful for correct choice of a radius of 
support (r-sphere) for reconstruction taking into consideration the 
orientations of local surface elements. In our work [28], we have 
investigated rather  simple scheme taking account of the local 
geometry of a surface.  
Fig. 9 shows the results of reconstruction using the approach 
discussed above. 
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(a)           (b)            (c) 

Figure 9: Implementation of the partition of unity for generation of polygons from scattered data of the fragment of Mount Bandai: (a) 
Curvature analysis. In the blue area, the surface variation σ > 0.3. (b) Result of reconstruction (ray tracing). Number of scattered points: 
10000, processing time: 0.941 sec, number of vertices after reconstruction: 90000. (c) Fragment of the mesh as a wire-frame with color 
attributes according to calculated heights.  

        
  (a)         (b)        (c)             (d) 

Figure 10: Surface reconstruction of a technical data set. (a) Cloud of points (4100 scattered points are used). (b) Simplified mesh shaded 
(processing time: 0.1 sec). (c) Fragment of the initial mesh, 31234 triangles., (d) Combined mesh modification (polygon reduction and 
statistical improvement of the mesh), 12132 triangles. 

 
Fig. 10 shows an implementation of the PUM for generation of 
polygonal surfaces for point sets represented by elevation data. 
We demonstrate the applicability of the approach to data 
homeomorphic to a disc; nevertheless, since a closed object can 
be partitioned into a collection of bordered patches 
homeomorphic to a disc, this is no serious restriction, as it was 
mentioned by Horman and Greiner in [29]. 

   
3.6 Polygon simplification 
  
Surface remeshing has become very important today for CAD and 
CG. This question is also very important for technologies related 
to engineering applications.  Simplification of a geometric mesh 
involves constructing a mesh element which is optimized to 
improve the element’s shape quality. Recently, a tremendous 
number of very sophisticated algorithms have been invented to 
obtain a simplified model. One exceedingly good overview [30] 
presents a problem statement and a survey of polygonal 
simplification methods and approaches. 
We present here in more details a surface simplification method 
which uses predictor-corrector steps for predicting candidate 
collapsing points with consequent correcting them by the use of a 
statistical approach for triangles enhancement. The predictor step 
is based on the idea of selecting candidate points according to a 
bending energy.  
We show that since the simplification method is sufficiently 
efficient for up to 90 percent of reduction, there is no need for 
user-tuned parameters and the approach  allows for obtaining a 
realistic time response (few seconds on AMD Athlon 1000 MHz) 
for sufficiently complex models (70K triangles). 

Finding the optimal decimation sequence is a complex problem. 
The traditional strategy is to find a solution that is close to 
optimal; this is a greedy strategy, which involves finding the best 
choice among all candidates. Our simplification algorithm is 
sufficiently simple and is based on an iterative procedure for 
performing simplification operations. In each iteration step, 
candidate points for an edge collapse are defined according to a 
local decimation cost of points belonging to a shaped polygon. 
We call such a polygon a star. After all candidates have been 
selected, we produce a contraction step by choosing an optimal 
point.  
A specific error metric is employed. We propose using the 
bending energy htA-1h as an error/quality cost to select candidates 
for an edge collapse. The approach is based on the use of  
displacements of N control points as the difference between the 
initial and final geometric forms. The central point of a star 
polygon is considered as a point that can slide to the neighboring 
points. The selection of candidate points is made according to the 
bending energy. We exploit a simple idea that the more smoothly 
we transform a central point, the fewer residuals there will be 
between an initial mesh and the subsequent mesh. In this step, we 
form a list of points to be contracted; this list contains a number 
of candidate points. In the contraction step we eliminate 
processing of points that can be contracted twice or more.   
Vertex placement is produced in two steps. In the first step we 
generate a position on the line connecting two vertices of an edge 
to be contracted. In fact, the optimal point is generated at the next 
step. The main underlying assumption of the algorithm is that a 
local mesh refinement automatically results in improved global 
mesh quality, bearing in mind the distribution of a limited set of 
polygons in the entire model. 
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Statistics (see, [31]) on the values of the mesh quality criteria 
parameters of the neighbors of each vertex of the triangle mesh in 
order to predict the most likely value are exploited. This provides 

some latitude in the choice of point placement allowing softer 
“transformations” of polygons to be produced. Fig. 11 shows 
examples of polygon simplification of  the “Horse” model. 

   
(a)         (b)          (c) 

Figure 11: (a) Fragment of the “Horse” model; (b) Fragment of the mesh after statistical processing; (c) Combined  
mesh modification: polygon reduction (40% of the original number of triangles)  and statistical improvement. 
 
Fig. 12 shows a good visual appearance of simplified models that 
is verified by luminosity histograms. 

 

 

    

     
(a)          (b)           (c)             (d) 

                                               
Figure 12: (a) Original “Horse” model (96966 triangles) and a luminosity histogram; (b) Simplified model produced accordingly to  the 
use of the bending energy (10% of the original number of triangles) and  the luminosity histogram; (c) Simplified model produced 
accordingly to  the  use  of the bending energy and statistical approach (9% of the original number of triangles) and  the luminosity 
histogram; (d) Simplified model produced accordingly to  the  use  of the bending energy and statistical approach (3% of the original 
number of triangles) and  the luminosity histogram. 
 
Notice that in all the examples in this paper the processing time is 
shown for our test configuration AMD Athlon 1000 Mhz, 128 MB 
RAM, Microsoft® Windows 2000, ATI Radeon 8500 LE. 
  

4. CONCLUSION 

RBFs seem ready-made for many applications in shape modeling 
and CG, even for interactive 3D modification and sculpting. We 
have to state that according to our experiments with various 
applications of RBFs for surface modifications, for instance teeth 
reconstruction and optical design, we have a good alliance of 

geometric modeling and optimization techniques to determine the 
reconstructed surface and assure overall smoothness. 
There is no single restoration and simplification method that 
provides the best results for every surface in the sense of quality 
and processing time. Experimental results indicate that the 
algorithms discussed in this paper provide rather good results and 
look promising for implementation in CAD and computer-aided 
engineering applications. 
Let us note here that, for example shown in Fig. 10(d), the volume 
was  well preserved, with a difference between the initial mesh 
and the processed one of about 0.65%. 
One shortcoming of the approach discussed in section 3.5 is that 
in some areas (almost vertical) of a surface the triangular vertices 
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may be spaced far apart. Selecting local data sets in the 
reconstruction algorithm according to the surface curvature is still 
an interesting research topic waiting for a solution. Our most 
urgent problem is to extend the algorithm given in section 3.5 to 
provide adaptive remeshing (enriching) according to local 
features of a surface geometry. 
Algorithm proposed for hole filling based on polygonal stitching 
and space mapping techniques produces smooth and visually 
pleasant results, however, it is assumed that any hole does not 
have islands. In practice, holes filling problem becomes user 
dependent whether holes could be filled or not. Our current task is 
to find an approach to combine automatic defect detection and 
repairing algorithms. 
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