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Abstract 
Most mesh processing filters (including remeshing, simplification, 
and subdivision) affect vertices of the mesh. Vertices coordinates 
are modified, new vertices are added and some original ones are 
removed, with the result that the shape of the original surface is 
changed. While a great deal of research is concentrated on 
preservation of surface shape during some mesh processing, there 
is no general tool that can be used for surface reconstruction at 
post processing stage. To the best of our knowledge, this paper is 
the first one to present a restoring algorithm that allows to 
“repair” output of various mesh processing filters. The proposed 
scheme is straightforward way to put “off-surface” vertices of the 
deformed mesh back to the original smooth shape. It does not 
require any surface parameterization and is based on normal 
analysis. The procedure is demonstrated by using it as post 
processing tool after applying local node movement and 
simplification algorithms. However, the technique is versatile 
enough to be used in a large variety of mesh optimization 
algorithms including remeshing and subdivision schemes. 
Keywords: Mesh Processing, Shape Reconstruction, Normal 
Analysis. 

1. INTRODUCTION 

Polygonal meshes provide simple and effective representation of 
complex geometric models. 
Unfortunately, most surface meshes can hardly be called 
satisfactory in terms of their size, element shapes and vertex 
sampling that makes them unsuitable for engineering and 
computer graphics applications. Depending on the problem and 
application, optimization of a given mesh may imply 
simplification, remeshing, subdivision or smoothing (by 
smoothing we do not understand denoising scheme but node 
movement technique for improving geometric mesh quality that 
does not change mesh connectivity). 
Any mesh processing filter affects vertices of the mesh, with the 
result that the shape of the original model is changed. The 
important problem is how to reconstruct the original shape 
without loosing benefits obtained with the applied filter. This 
means that the restoration procedure should not change the 
number of mesh elements and mesh connectivity and should not 
cause damage to mesh element quality. 

In this paper, we describe a new approach to solve this problem if 
the original mesh approximates a smooth  continuous surface. 
This means that the mesh should be dense enough to represent 

-shape correctly (variation of curvatures between adjacent 
vertices should not be considerable). 

1C

1C

1.1 Related works 
To the best of our knowledge, there is no general method that can 
be used as a restoring technique after applying various mesh 
processing filters.  Most research addresses this problem only for 
particular algorithms. For instance, in several works devoted to 
subdivision (of 3D surfaces [1-2] or 2D curves [3]) there have 
been proposed interesting schemes for generating smooth curves 
and surfaces with minimum curvature variations. The newly 
introduced vertices are moved in order to interpolate the smooth 
shape. A great deal of research has focused on preserving shape of 
the original model for node movement techniques improving 
geometric mesh quality [4-6]. Recently, several remeshing 
algorithms allowing to keep the vertices on the approximated 
smooth surface have been discussed in [7-10]. 
However, as is mentioned, we have not found in the literature a 
general approach that can be used for surface reconstruction at 
post processing stage if applied filter caused some damage to the 
original shape.  

1.2 Contribution 
In this paper, we present a novel technique allowing to put “off-
surface” points of the deformed mesh back to the original surface. 
By original surface we do not mean the original mesh but smooth 
shape approximated by the mesh. 
The basic idea of the proposed scheme is as follows. 
At each vertex of the deformed mesh we find an “optimal” 
direction defined by the normals of the nearest triangle in the 
original mesh. We then seek for the new position of the 
considered vertex along this direction. The distance of movement 
is computed from the intersection of the “gliding” normals of the 
closest triangle and the direction of movement.  
The idea of moving points along some directions (usually normals 
directions) to fit the smooth surface is not new. It has been 
successfully used for many problems including subdivision [1-2], 
displaced subdivision surfaces [11], and normal meshes [12].  
One of our contributions is to adjust this idea to the problem of 
repairing the deformed meshes. Most approaches allow to move 
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points to the approximated surface from the triangles of the 
original mesh (or control mesh). But what should we do if “off-
surface” point of the deformed mesh does not belong to the 
original mesh? We propose solution to this problem.  Also, 
instead of fitting triangles of the original mesh with a smooth 
function and trying to project the vertices of the deformed mesh 
onto this function, we combain these two steps into a single 
simple procedure based on normal analysis. The method does not 
require any parametric representation of the surface that allows to 
save computational time without sacrificing any quality in results. 
Moreover, we will demonstrate that the proposed technique does 
not cause considerable damage to the mesh element quality. Thus 
the procedure may be successfully used as post-processing for 
smoothing and remeshing filters.  
Remarks (what we mean by “reconstruction”) Let us note that 
we do not state the problem to guarantee geometric fidelity of the 
deformed mesh to the original one. We assume that the deformed 
shape is geometrically faithful representation of the initial 
surface. If there are no vertices in the mesh, which can represent 
some features of the original model, these features cannot be 
reconstructed with our technique since the algorithm does not 
offer any mechanism to insert additional points. Fig. 1(a) 
illustrates 2D case. Our objective is just to move the vertices of 
the deformed mesh as close as possible to the original smooth 
surface. However, the proposed technique is powerful tool 
allowing to make precise reconstruction of the original shape if 
the resulting mesh contains enough points (see for illustration of 
2D case Fig. 1(b)). 

 
Figure 1: (a) Our restoring technique cannot reconstruct salient 

features (shown by red color) of the smooth curve since the 
polyline does not contain enough points that can be put to the 
curve; (b) Polyline curve (shown by dotted line) represents the 

shape of the smooth curve geometrically correctly. However, the 
accuracy of approximation can be improved by moving vertices 

of the polyline to the curve with our restoring technique. 

2. PRELIMINARIES 

The input to our scheme is two oriented triangular meshes M  
and M ′  of arbitrary genus. First mesh is a piecewise linear 
approximation of some smooth surface , which is -
continuous. 

S 1C
M ′  is the mesh obtained from M  with some mesh 

processing algorithm (smoothing, remeshing, simplification or 
subdivision scheme). Further we will refer M  as an original 
mesh and M ′  as a resulting mesh. 

The vertices of the resulting mesh M ′  are “off-surface” points if 
they do not belong to the surface  approximated by the original 
mesh 

S
M . 

Normal gliding is movement of normals of the original mesh 
along circular arcs defined by the vertices of the original and 
resulting meshes. 
Our objective is to move “off-surface” points of the resulting 
mesh to the original smooth surface . S

2.1 Normal estimation 
To apply our scheme, we first need to estimate normals to the 
smooth surface approximated by the original mesh. Strictly such 
normals should be computed from a continuous analytic surface 
representation. However, it is computationally inefficiently. 
Therefore usually, the normal at a mesh node is computed by 
averaging the normals of the incident triangles with some weights. 
Since according to analysis in [13] “weighting-by-inverse-areas” 
scheme asymptotically better than other popular “one-ring-
neighborhood” methods, we use this scheme to compute the 
normals at the vertices of the original mesh. 

3. RESTORING TECHNIQUE 

As is mentioned, the core of our technique is finding for each 
vertex of the resulting mesh the “optimal” direction and moving 
the vertex along this direction. To define the distance of 
movement, we use the “gliding” normals of the closest triangle in 
the original mesh along circular arcs towards the “optimal” 
direction. 
The scheme is based on the following fact. If the sampling density 
of the original mesh is sufficiently high to allow the variations of 
surface curvatures between adjacent vertices to be neglected the 
underlying smooth surface can be locally approximated by 
circular arcs (Fig. 2). The same idea has been successfully applied 
to denoising and subdivision of triangular meshes in [1-2,14].  

 
Figure 2: Interpolation of a smooth surface over the flat triangle 

by blending circular arcs 
3.1 “Optimal” direction 
Let us consider some vertex  in the resulting mesh and 

closest triangle in the original mesh 

Mpi ′∈′

MpppT iiii ∈∆=∆ 321 . We 

will seek a new position of  along the “optimal” direction at ip′

ip′ .  To simplify the procedure, let the “optimal” direction be 

defined by the normal unit vector at some point  inside 

the triangle 

opt
iN ip0

iT∆ . 

opt
iN  should satisfy the following conditions: 

1)  should be a linear interpolation of the normals at the 

vertices of the triangle . Namely, 
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barycentric coordinates of the origin  of the vector 

; are the normals at the vertices ,
ii Tp ∆∈0

opt
iN jN iij Tp ∆∈ 3,2,1=j . 

2.)  should define a line  (“optimal” direction) passing 

through the considered vertex . See for illustration Fig. 3. 

opt
iN opt

il

ip′

 

Figure 3: Finding the optimal direction  at the vertex opt
iN ip′ . 

 
These conditions define a system of three quadratic equations 
with unknown coordinates of the point . The system 
can be solved numerically with Newton method. However, it is 
easy to get exact solution reducing the system to one cubic 
equation. 

ii Tp ∆∈0

3.2 Algorithm 
We define the new position of the vertex Mpi ′∈′  by the 
following formula: 

opt
i

j
ji

j

new
ij

new
i Nppp ⋅+′== ∑∑

==
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3

1 3
1

3
1 δ ,                       (1) 

where jδ , , are the values of displacement obtained by 

the “gliding” normals at the vertices of the triangle . 

3,2,1=j

iT∆

Let , ,  be the lines passing through the vectors 

, ,  respectively. Let  glide along a 

circular arc defined by and  that originates from . 

Then the value of displacement of the point  along  is 
defined as: 
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 (Fig. 4(a)). 3,2,1=j

Two cases (max and min-algorithms)depending on the directions 

of and must be considered.  First case corresponds to the 

local surface maximum at in the direction 

jN opt
iN

new
ijp ij

new
ij pp (see 

Fig. 4 for illustration). To process second case (local minimum at 

in the direction new
ijp ij

new
ij pp ) we need to replace in formulas 

(1-2) jN , opt
iN to jN− , opt

iN− respectively.  

 

Figure 4: (a) Finding the new position  for the vertex new
ijp ip′  

with max-algorithm; the distance of movement for the vertex ip′  

is marked by red color; (b) Finding the new position for the 

vertex 

new
ijp

ip′  with min-algorithm; the distance of movement for the 

vertex ip′  is marked by red color. 

 

3.3 Implementation notes 
The restoring algorithm we described so far demonstrates perfect 
results for uniform meshes with the elements close to equilateral 
ones. To improve the results for non-uniform meshes with highly 
distorted elements we make the following changes in the scheme. 
We average obtained displacements , jδ 3,2,1=j , with a 

coefficient 6
1=k (that is opt

i
j

ji
new
i Npp ⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+′= ∑

=

3

16
1 δ ). 

After that the procedure is repeated several times with the updated 

position of the considered vertex  and the vector . Our 
experiments show that 5 iterations is always enough to achieve 
good results.  

ip′ opt
iN

In the case of highly nonuniform meshes there can be also some 
difficulties in defining whether max or min-algorithms should be 
implemented. One possible way to make the scheme more robust 
is to estimate the curvatures at the vertices of the original mesh 
M . Let ip′  be a vertex in the resulting mesh M ′  whose new 

position is to be found. Consider the vertex , 

where 

MTp iij ∈∆∈

iT∆  is the closest triangle to . If  is a local surface 

maximum (that is maximum (
ip′ ijp

maxλ ) and minimum ( minλ ) 

curvatures at  are greater than 0) max-algorithm should be 

used. In the case of a local minimum (
ijp

0max <λ , 0min <λ ) 
min-algorithm is implemented. If we deal with a saddle point 
( 0minmax <⋅λλ ) the choice of the algorithm depends on the 

sign of the normal curvature ( nλ ) in the direction corresponding 

to the vector iij pp ′ . If 0>nλ we use max-algorithm; otherwise 

min-algorithm is applied. 
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Figure 5: (a) Fragment of the original mesh of the sphere; (b) 

Model processed with Laplacian smoothing and fragment of the 
corresponding mesh; (c) The model (b) optimized with our 

restoring technique and fragment of the corresponding mesh. 

 
Table 1: Deviation of the meshes processed with various 

techniques from the original analytical surfaces. 

 maxE  
sphere 

averE  
sphere 

maxE    
cub. surf. 

averE  
cub. surf. 

M ′  0.00239 0.0014 0.007234 0.001524 
optM  0.00017 0.00002 0.000842 0.000163 

bM  0.00216 0.0019 0.007591 0.002753 

eM  0.00194 0.0013 0.007153 0.001438 

cotM  0.00192 0.0012 0.007154 0.001527 

 

 
Figure 6: (a) Fragment of the original mesh of the cubic surface; 
(b) Model processed with Laplacian smoothing and fragment of 
the corresponding mesh; (c) The model (b) optimized with our 
restoring technique and fragment of the corresponding mesh. 

 
Figure 7: (a) Original model of Beethoven and fragment of the 
corresponding mesh; (b) The model processed with Laplacian 

smoothing during 2 iterations and fragment of the corresponding 
mesh; (c) The model (b) optimized with our restoring technique 

and fragment of the corresponding mesh.  
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Figure 8: (a) Original Hippopotamus model; (b) The model processed with BDS approach; (c) The model (b) optimized with our restoring 
technique; (d) Mesh of the original Hippopotamus model; (e) Mesh of the (c) model; Note that our restoring algorithm allows to preserve 

mesh element quality improved with BDS approach. 
 
 

4. APPLICATIONS 

4.1 Smoothing 
Our original motivation of this research started with the studying 
problem of improving element quality for surface meshes [5-6]. 
We concentrated on the local node movement techniques, which 
do not change mesh connectivity and commonly called in 
engineering community mesh smoothing. 
There are three main possibilities for node movement.  We can 
flatten the original surface by repositioning the node to the 
geometric center of its neighboring nodes, like is done in 
Laplacian smoothing; we can keep the node on the original 
discrete surface [4] (let us call this approach “Back to the Discrete 
Surface” (BDS)); or we can try to put the node on the 
approximated smooth surface [5-6]. While the latter approach 
seems to be the most promising, the techniques proposed in [5-6] 
have some limitations.  
Let us demonstrate how our restoring procedure can optimize the 
results of Laplacian smoothing and BDS approach. 
We first processed with Laplacian smoothing very irregular 
meshes of a sphere and a cubic surface (Fig. 5(a), 6(a)). From Fig. 
5(b), 6(b) it can be seen that though geometric mesh quality has 
been improved the obtained surfaces are far from the original 
smooth models. Results of applying our restoring technique to 
these surfaces are demonstrated in Fig. 5(c), 6(c).  Note that 
resulting models are very smooth while the mesh quality 
improved with Laplacian smoothing has been hardly changed.  

One can ask why we need the restoring technique if the meshes in 
above examples can be simply processed with some smoothing 
filter [15-17]. Our answer is the following. 

• Although smoothing filters produce very smooth 
shapes, they do not allow to move mesh vertices on the 
original surface. On the contrary, our algorithm allows 
to put vertices back to the original shape (Fig. 9). This 
property of the algorithm is very attractive especially 
for engineering applications where accuracy of 
numerical simulations heavily depends on accuracy of 
surface approximation. The data from Table 1 verifies 
that maximum ( ) and average ( ) deviations 
from the original analytical surfaces for the meshes 
processed with our restoring technique (

maxE averE

optM ) much 
lesser then those for the meshes processed with 
Laplacian smoothing ( M ′ ), bilapacian flow [17] 
( bM ), Taubin smoothing scheme with equal weights 
[15] ( eM ) and cotangent weights [16] ( cotM ). 

• The restoring algorithm works not only as a smoother. 
Our technique provides much more possibilities. Given 
the original mesh M and the resulting mesh M ′  we 
can reconstruct lost features of the original smooth 
shape.  Let us give an example. 
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Figure 9: Typical smoothing filter produces the smooth surface 
but fails to reconstruct the original shape. 
 
Fig. 7(a) demonstrates the original model of Beethoven and the 
same model processed with Laplacian smoothing during 2 
iterations (Fig. 7(b)). We can see that almost all essential features 
of the model have been diffused. Our restoring technique allows 
to reconstruct the original shape (Fig. 7 (c)). And again the 
technique does not cause considerable damage to the mesh 
element quality improved with Laplacian smoothing.  
Another example is connected with above-mentioned BDS 
approach. The simplest BDS scheme is to find an optimal node 
position in a locally derived tangent plane and project it back to 
the original discrete surface. The difficulty is to define correctly 
the tangent plane.  Fig. 8(a) shows an example when incorrectly 
estimated normals and tangent planes result in a rather bad non-
smooth surface with distortion of some features of the original 
model. Our restoring technique can efficiently eliminate this 
drawback while preserving the geometric mesh quality improved 
with the technique (Fig. 8(ce)). 
 

4.2 Simplification 
Finally, let us demonstrate how our algorithm can be applied to 
simplification procedure. When the mesh is simplified be edge 
collapse, it is possible for the two endpoints to be replaced by a 
new point at the midpoint of the collapsed edge (such procedure is 
applied in many engineering applications [18-19]) or at another 
point of the edge (like is done in Quadric Error Metric algorithm 
[20]). However, such procedure may cause the same problems as 
BDS approach since new points always stay on the original mesh 
but not on the surface approximated by this mesh. 
Fig. 10(b) demonstrates the simplified model of Buddha obtained 
by replacing collapsed edges by the midpoints. We can clearly see 
“oversmoothing” effect: many features of the original model were 
diffused. The restoring technique allows to reconstruct these 
features as shown in Fig. 10(c). Fig. 10(def) demonstrates the 
similar results for the Dragon model. 
Our algorithm can be used not only as post-processing 
optimization but also as an intermediate step in the described 
simplification procedure that may improve essentially the output 
model. 

 
Figure 10. (a) The original Buddha model (144647 points); (b) 

Fragment of the Buddha model simplified by replacing collapsed 
edges by the midpoints (14625 points); (c) Fragment of the model 
(b) optimized with our restoring technique (14625 points); (d) The 

original Dragon model (437645 points); (e) Fragment of the 
Dragon model simplified by replacing collapsed edges by the 

midpoints (4603 points); (f) Fragment of the model (e) optimized 
with our restoring algorithm (4603 points) 
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5. COMPARISON OF THE ALGORITHM WITH THE 
SCHEME OF KARBACHER ET. AL. 

As is mentioned, our scheme is close in spirit to the one of 
Karbacher et. al. [1-2] that has been used for non-linear 
subdivision of the triangular meshes. Several important 
observations can be made: 

• While the scheme of Karbacher et. al. allows to move 
points from the triangles of the original mesh to the 
approximated smooth surface, we propose the simple 
procedure to put any “off-surface” point to the 
approximated smooth shape. 

• In addition to the max-algorithm used in works of 
Karbacher et. al. we have introduced the min-algorithm 
that allows to improve significantly “restoring” 
properties of the technique.  

• Subdivision scheme based on circular arcs movement 
requires sometimes additional smoothing of the final 
surface [2]. We eliminate this drawback by using 
“weighting-by-inverse-areas” scheme for normal 
estimation and iterative procedure described in Section 
3.3. 

6. SUMMARY AND FUTURE WORKS 

We have presented the novel approach for reconstruction of 
shapes from output of various mesh processing filters. 
The proposed technique has been applied to optimize output of 
local node movement and simplification algorithms. We plan to 
apply also the algorithm as an optimization step for remeshing 
process. 
We clearly realize limitation of our technique. As is mentioned in 
Section 1.2, the algorithm is able to “reconstruct” the original 
shape only if the resulting mesh is geometrically faithful 
representation of the initial model. In our future research we will 
explore ways to extend capacities of the technique. 
Another problem arises when applied mesh processing results in 
un-aligned features of the two meshes. In that case, using a simple 
Euclidean distances for the correspondence between the vertices 
of the deformed mesh and the elements of the original mesh may 
result in erroneous restoration. One way to fix it is to associate 
features in the original and resulting meshes by using more 
sophisticated metric. Another possible solution is to combine the 
applied filter and our technique. Whenever vertex of the original 
mesh is moved, we need to put it to the original approximated 
smooth shape with our algorithm. We are going to address this 
problem in our future research.   
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