
Implementing Classical Ray Tracing on GPU – a Case Study of GPU
Programming

 Andrew V. Adinetz, Sergey B. Berezin

Department of Computational Mathematics and Cybernetics,
Moscow State University, Moscow, Russia

{adinetz, s_berezin}@cs.msu.su

Abstract

General purpose GPU programming has become a topic of
intensive research recently. In this context, GPUs are
typically used as general-purpose stream processors.
Although is usually suites most of existing algorithms, it is
far from ideal for ray tracing as it generates extensive
memory bandwidth.
We take an alternative approach and instead implement the
entire algorithm in a single pass, as in classical ray tracing.
This allows reducing memory bandwidth and increasing the
performance of the algorithm. The results are demonstrated
on several test scenes.
Keywords: Ray Tracing, Interactive Graphics, GPGPU, GPU
Ray Tracing

1. INTRODUCTION
As GPU evolved to support programmable features, general
purpose GPU programming became a field of intensive
scientific research. The number of projects using GPU for
various general purpose computations has been rapidly
increasing in recent years. A site exists [1] where general
purpose GPU news are regularly published. GPU
computations has been applied to different domains, ranging
from rendering-related to those which exhibit no direct
connection to rendering problems.
The first class of problems includes rendering of translucent
objects [2], classical radiosity [3], rendering caustics [4], [5],
and, of course, GPU ray tracing. The second class of
problems includes fluid dynamics simulation [6], [7], matrix
multiplication [8], image and video processing [9], FFT [10],
neural networking [11] etc. See [1] for more domains and
solutions. Most of these solutions use the streaming
programming approach [12] and envision a GPU as a
streaming processor.

In this approach, the algorithm is usually broken into
small parts – kernels, having no internal state, which take
streams and also place streams into their output. A stream in
this approach is a (possibly endless) sequence of uniform
structures, resembling a file. At each step, a kernel takes a
chunk from each of the input streams, processes it, and
(possibly) puts one data chunk in each of its output streams.

This paradigm can be easily mapped to modern GPU
architecture. Kernels are easily mapped to pixel shaders. A
pixel shader is a GPU program that is run for each of the
display image pixels independently. Independence of pixel
thus allows executing the shaders for different pixels in
parallel. Typically, modern graphics processors have from 8
to 48 pixel pipelines.

Streams are mapped to textures. Textures also allow random
access to some kind of data, which can also be used to access
static data during kernel execution.
“Conditional” kernels, that is, kernels, which can output to a
stream depending on a certain condition on input data, are
also mapped to shaders. However, an additional pass is
performed after executing such a shader. This pass determines
whether the input actually exists or whether it doesn’t. This
can usually be deduced from the output itself. Depending on
whether the logical output exists, it writes the appropriate
depth value. During the following shader execution, the
shader is executed only for pixels which have the correct
depth value, thus reducing the rendering time considerably
because of “early depth kill”. This write to the depth buffer
cannot be performed in the main shader since it is usually also
executed conditionally, and writing to the depth buffer in a
shader prevents “early depth kill”. In order to define whether
or not there are pixels for which to execute the shader (i.e. the
condition is “true”), occlusion queries are used [13].
As this framework seemed very natural on first GPUs, which
were able to execute only short and simple pixel shaders, it
has been applied to solving many general purpose
computation tasks on GPU, including ray tracing. The first
GPU ray tracing solution has been implemented in the context
of this framework. It was envisioned by Purcell et. al in [14]
and implemented for the first time in [15] for the photon
mapping algorithm. The entire algorithm, however, could run
on GPU only very slowly due to the limitations of graphics
processors of that days (GeForce FX 5900 was used). Later,
several more GPU ray tracing works appeared, which were all
implemented using streaming programming paradigm, which
compared using different acceleration structures for ray
tracing.
Although this implementation seems quite natural and works
on a wide range of modern graphics processors, it has been
proved to have significant drawbacks.
First of all, it creates prohibitively extensive memory
bandwidth by reading and writing intermediate variables to
textures at every pass. Being justified for the previous-
generation graphics cards, which had few registers and were
able to execute only short shaders, it seems unfeasible on
modern graphics processors, which have 32 registers and can
run shaders of up to 512 instructions [16].
Second, it requires a very large number of rendering passes.
As most of the passes are dependent and require an occlusion
query operation, this, theoretically, can create a bottleneck. In
practice, however, this is not a problem since the graphics
memory bus seems to saturate much faster.
Extensive memory bandwidth created by reading and writing
to textures makes developers to use different tricks on order
to reduce the bandwidth. This, in turn, leads to cutting the

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

number and precision of intermediate variables, which either
results in computational overhead or leads to loss of
precision. All this leads to significant underuse of GPU
computational possibilities in application to ray tracing. As a
result, the GPU ray tracers perform much slower compared to
their CPU counterparts.
On the other hand, modern graphics processors, which
completely support OpenGL 2.0 feature set [17], provide
efficient support for complex flow control instructions, such
branching and looping with early break instruction. In order
to be efficient, GPU ray tracing has to make use of all these
features of modern graphics processors.
In this paper, we take a completely different approach to
implementing ray tracing on a graphics processor. In contrast
to streaming programming approach, which splits the
algorithm into a number of passes, we implement the classical
ray tracing algorithm in a single pass. Our implementation
supports reflections and simple Phong shading [18]. It also
runs faster than any of the existing GPU grid ray tracers and
has a performance roughly comparable to that of an optimized
CPU ray tracer. Our approach also supports moving objects,
which is connected with a number of difficulties in other
approaches.
The rest of the paper is organized as follows. Section 2
provides a brief overview of the classical ray tracing
algorithm various subdivision structures used in it. Section 3
describes our approach and its implementation. Section 4
discusses some algorithmic issues connected with
implementing classical ray tracing on GPU. The performance
of our GPU ray tracer is demonstrated in section 5. Section 6
provides the discussion of the performance and outlines
possible future work in this field.

2. CLASSICAL RAY TRACING ALGORITHM
Although ray tracing has been used for different purposes
long before emergence of computer graphics and even
computing, it had not been before 1980 that it was used for
rendering purposes.
Whitted et. al [19] was the first to use ray tracing to render
physically accurate images. Although using ray tracing for
rendering had been proposed before, those proposals required
a prohibitively large (especially on that-time computers)
amount of computations because of the need to intersect
every ray with every possible object (i.e., triangle) in the
scene. What Whitted proposed were BSP trees. They allowed
significantly reducing the amount of computation needed,
since a ray had to intersect significantly less objects. Research
has shown that spatial subdivision structures give acceleration
by more than a factor of 100 on scenes complex enough.
The classical algorithm is widely known, however, we repeat
it here. For every screen pixel, a ray is traced, and the first
ray-object intersection is found. If the object intersected does
not exhibit reflective or refractive properties, shadow rays are
cast towards point light sources to define the color of the
point. If the primary ray encounters a purely reflective
surface, it is reflected and the entire procedure is repeated.
For the refractive surface, two rays are spanned: the reflective
ray and the refractive ray. In order for the algorithm to
terminate in a finite time, either the maximum ray tracing
depth is set or there exists a minimum intensity at which no
further tracing is performed.
In 1985, Fujimoto et. al [20] proposed to use uniform grid
subdivision structure for ray tracing. For the uniform grid, an
efficient traversal algorithm exists. However, due to its

uniformity, it demonstrates performance decrease on scenes
with non-uniform object distribution.
As uniform grid, unlike BSP tree, does not require any kind
of recursion or stack to be traversed, it is the primary
candidate for GPU ray tracing implementation. It has been
used in first GPU ray tracers. Although it has been proved to
be not the fastest one in subsequent implementations, it is
used in our approach.

3. OUR IMPLEMENTATION
In our approach, single pass uniform grid ray tracer is used.
Single pass means that the entire ray tracing is done in a
single pixel shader.
In order to provide support for moving objects, two-level
spatial subdivision is used. At both subdivision levels, the
uniform grid is used as the subdivision structure. The first
level subdivision (also further referred to as “scene
subdivision”) is a uniform grid, which is constructed for the
bounding boxes of the scene instances. An instance is defined
as an object pointer and a transformation matrix. The object
pointer indicates which object is instantiated (hence the name
instance), and the transformation matrix places the object in
the scene. As multiple instances can reference a single object,
memory space required to store geometry can be saved for the
scene which contain a large number of the same objects.
Each object has an associated bounding box and its own
subdivision structure (also referred to as “second-level
subdivision”). This subdivision structure is a grid which is
constructed for the triangles of the object. The entire
approach to handling moving objects is similar to one used in
some computer games, with uniform grids used instead of
BSP trees.
As the number of various scene objects can be high, we are
unable to hand-tune the size of the uniform grid for each of
the scene objects. Therefore, we typically use a simple
formula to compute the size of the grid by default. If hand-
tuned grid size is used in some of the test examples, it is
stated explicitly.
Although some traversal overhead is generated by two-level
subdivision structure, it is completely offset by the quality of
the grids created even without any manual tuning.
The ray tracing algorithm proceeds as follows. For each
screen pixel, a view ray is computed, which is cast into the
scene. Due to some limitations of modern graphics
processors, we were able to implement only one procedure
for ray casting, so the same ray tracing procedure is used for
both primary and shadow rays.
The ray is first intersected with the scene bounding box. The
data of the scene bounding box as well as the scene grid
coefficients (see below) are stored in the shader uniform
variables. If the ray does not intersect the scene bounding
box, it is not traced further and no intersection is reported. If
this is a primary ray, the pixel is simply colored with
background color.
If the ray intersects the bounding box, its segment is clipped
by the scene bounding box and proceeds to grid traversal.
Grid traversal is first initialized, and at each traversal step, the
ray either proceeds to the next voxel or terminates the
traversal. When a ray encounters an empty voxel, it simply
proceeds further. If, on the contrary, it encounters a non-
empty voxel, it is successively intersected with each object of
the grid. For the scene-level subdivision, these are object
instances. For each instance intersection, the ray is

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

transformed to the local coordinate system of the object. Then
it is tested against the object bounding box. In case of
intersection, the ray segment is again clipped and proceeds to
second-level grid traversal. This traversal is performed in the
same way as the first-level subdivision. However, instead of
instance intersections, the ray is tested against triangles.
The details of grid traversal are described below, in section 4.
The triangle intersection test is, in fact, a modified barycentric
test [21]. First, the intersection point ray parameter is
calculated. It is tested against the current segment. If it does
not belong to the current ray segment, no intersection is
report. Otherwise, the intersection point and barycentric
coordinates are computed, and the latter are tested against the
[0, 1] segment. The intersection takes place only if all
barycentric coordinates are between 0 and 1.
The details of ray-triangle intersection are elaborated in
section 4.
All attributes of the intersection point are computed only after
the intersection point has been computed. This is performed
for the sake of efficiency.

Figure 1: A Hind24 scene rendered with our GPU ray tracer.

At ATI X1800 XL, it renders at 6 fps.

4. SOME ALGORITHMIC ISSUES
As modern graphics processors are significantly different
from CPUs, the algorithm must be designed in a different
way than for a central processor. Here we discuss some of the
issues of algorithm design and implementations to achieve
more effective performance on GPU.
First of all, general problems, such as addressing and texture
allocation, are discussed. Then the discussion proceeds to
some particular problems, such as implementing grid
traversal and triangle intersection. The results are given in
section 6.

4.1. General Issues
In order to perform ray on a scene using the graphics
processor, the scene data must be first loaded to the graphics
memory. The only way to access graphics memory in a pixel
shader running on a modern graphics processor is to access a
texture. Fortunately, there are no explicit limitations on a
number of texture accesses.
The scene data, therefore, has to be written into the texture. It
is unfeasible, however, to use a single texture to store scene
data. First of all, the size of the texture is limited. The
maximum extent of a 2D texture is 4096. As 1D textures have
no more than 4096 elements, storing scenes in such textures

is completely unfeasible. Although it is possible to use a 3D
texture to store the entire scene, it is again unfeasible due to
two reasons. First, there will be significant problems with
addressing, as (at least) 2 floating point coordinates are
needed. Second, different scene data require different levels
of precision, and it is unfeasible to store all of them with the
same precision. For example, geometry data require at least
32 bit floats to store in order not to exhibit “holes” in
geometry. 2D addresses, however, can be stored with 16-bit
precision (halves), as it is shown below.
2D textures may seem of insufficient capacity. However, as
modern hardware is optimized for 2D texture access and 2D
texture addressing has less overhead than 3D texture one, 2D
textures are used, as their capacity is enough to store scenes
of moderate complexity.
Most of existing GPU ray tracing approaches use 2D textures
as virtual 1D arrays. They store addresses as single-precision
floating point values and translate them into 2D values for
actual texture fetches. While that simplifies programming, it
also creates address translation overhead. As address
translation may involve operations which cannot be easily
vectorized, and the number of address translations per ray is
large enough, this overhead tends to be significant.
In order to overcome this, we use 3D addressing for grids and
2D addressing for other data. This eliminates address
translation overhead. However, it introduces some other
obstacles. Each address requires now 2 floating point values
to store, which may require more memory and more
bandwidth. However, we found out this overhead to be not of
great importance. Address data are often stored in separate
textures (as indices of triangle vertices), and they are stored
with 16-bit precision, which means that no memory or
bandwidth overhead is created.
Texture allocation is another problem. As the scene now
contains multiple objects, and the number of textures
available is limited, a single texture must be shared between
similar data from multiple objects. Therefore, texture
allocation must be performed. However, various types of data
require various allocation types. For example, 3D grids
require allocation of contiguous 3D data blocks, while
triangle data may be allocated in multiple blocks containing a
certain number of triangles each. Currently allocation is
performed by using custom allocation code for different types
of textures; however, we are now switching to performing it
in a separate library.

4.2. Grid Traversal
Using uniform grids is a common approach in GPU ray
tracing. From the first sight, grids seem to be the most GPU-
friendly subdivision structure. Modern graphics processors
provide support for 3D textures, which is the natural way to
store grid data.
In our approach, we store grid data in a 3D texture. First of
all, as grid texture must be shared between multiple objects, it
must be allocated. A simple approach for 3D texture
allocation is used. The entire 256 x 256 x 256 texture is split
into blocks of size 16 x 16 x 16. For each block, a flag is
maintained whether it is currently allocated or not. If a grid
data block of a specific size needs to be allocated, the number
of 16x16x16 blocks required to contain is computed. Then
the contiguous amount of these blocks is allocated for the grid
data.
For the grid traversal itself, we use a variation of 3DDDA
algorithm [20]. As modern graphics hardware does not

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

provide implementation for fast dynamic indexing of vector
components, no leading direction is selected. The ray
direction is used as a leading one instead. Though it results in
some computational overhead, it can be efficiently
implemented in GPU using fast vector operations.
The algorithm is described in detail in the pseudocode
provided in figure 2.

vec3 signDir, steps, voxSeg, nextTs, vc;
float vstart, vend, gridt;
initTraversal(grid, ray, start, end) {
 gridt = end;
 signDir = sign(k) / l;
 steps = abs(l / k);
 vc = ceil((r0g + kg * start) / l) * l;
 nextTs = (vc + step(0, signDir) – r) / k;
 vstart = start;
 vend = min(nextTs.x, nextTs.y, nextTs.z);
}

nextVoxel() {
 t = vend;
 mask = step(nextTs, t);
 vc += mask * signDir;
 nextTs += steps * mask;
 vstart = t;
 vend = min(nextTs.x, nextTs.y, nextTs.z);
}

bool finished() {
 return vend >= gridt;
}

bool traverseGrid(grid, ray, segment) {
 s = clip(grid.box, ray, segment);
 if(!empty(s)) {
 initTraversal(grid, ray, s);
 do {
 v = gridVoxelAt(vc);
 if(v.nObjects != 0) {
 if(intersectTrigs(ray, vstart, vend, v.addr)) {
 update t;
 return true;
 }
 } //end of if()
 } while(!finished())
 } else
 return false;
}

Figure 2: The pseudo code of our grid traversal algorithm.

Fortunately, we were able to design a grid traversal approach
which results in encoding the entire grid data in only 2 3D
vector coefficients. These grid coefficients are computed
using the following formulae:

a = NL / Δl,
b = c0 – g0NL / Δl.

The coefficients in the formulae have the following meaning:
 L – the size of the grid in world coordinates.
 N – the number of voxels along each dimension
 c0 – the address of the texture portion allocated to the grid
 Δl – the “size” of a single 3D texel in texture coordinate.
Since the size of the entire texture in texture coordinates is 1,
Δl would be usually 1/256, that is, inverted number of
“voxels” along a single grid texture dimension.
 g0 – the origin of the grid in the world coordinates.
These coefficients are applied to ray coordinates in the
current coordinate system (which is either the world
coordinate system for the scene grid or the local coordinate
system for the object grid). The transformed ray data are
computed using the following formulae:

r0g = ar0 + b ,
kg = ak .

Then the algorithm described in the pseudocode in figure 2 is
applied for ray-grid traversal. Whenever a non-empty voxel
is encountered, all objects contained in it are successively
intersected.
This algorithm is, of course, applied on the 2-level basis.
First, it is applied for scene grid traversal, and then for the
object grid traversal. The actual code for grid traversal is a
bit different for two levels, however. Current graphics
processor available supports only 4 nesting loops, which is
not enough to use the same algorithms at both levels (as 1
loop is required at each level for both grid traversal and
successive object intersections, and 1 loop is required for a
high-level ray tracer, totaling to 5 nested loops). For the
object-level, as the cost of ray-triangle intersection are
relatively low, a common 2-loop approach is used. For the
grid traversal, however, another approach is used. Both grid
traversal and scene object intersection is done in one loop. At
each iteration, the current action (further traverse or intersect
an object) is selected and then performed. It requires an
additional if statement. Although it may result in some
overhead, we’ve found out that it is very little, and that this
technique can be applied.

4.3. Triangle Intersection
For the triangle intersection itself, the barycentric test is used
[21]. Originally, the projection plane (one of the coordinate
planes) has been chosen for the triangle before the actual ray
tracing (that is, at the preprocessing stage). During the
intersection, the ray would have been projected to that plane
and the coordinates of the ray projection would be used for
computation of barycentric coordinates.
This, however, is impossible for graphics hardware, as it
provides no support for dynamic indexing. Therefore, a full
set of ray coordinates needs be used for the barycentric test
computations. As such, the test can benefit from vector
instructions, such as dot products, available on modern
graphics hardware.
Since modern GPUs are designed to work with 4D vectors, it
is useful to write the entire test in terms of 4D vectors (ATI
cards have separate units for performing 3D vector / scalar
instructions; however, implementing the test in 3D vectors
resulted in a performance lost even on ATI cards). The 3D
vectors are extended to 4D as follows. A positional vector
(such as ray origin or an intersection point) gets the 4th
coordinate (further referred to as w) equal to 1, while the
directional vector (a normal or a ray direction) gets the 4th
coordinate equal to 0. The plane with the equation Ax + By +

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Cz + D = 0 is written in the form of (A, B, C, D). As the
equation is specified only up to the constant factor, we use
various normalizations for the plane equation discussed
below.
The triangle is actually represented as a set of 4 planes.
Actually, 3 planes are enough, but the 4th is still stored. Each
plane is stored in a separate texel of a 4-component 32-bit
precision floating point texture. The first plane represents the
triangle plane. It is normalized so that A2 + B2 + C2 = 1. 3
other planes are orthogonal to the triangle plane and actually
form the sides of the triangles in intersection with the triangle
plane. The normals of these planes are directed inside the
triangle and they are normalized so that A2 + B2 + C2 = h2,
where h is the height of the triangle to the respective triangle
side.
In this setting, the barycentric coordinate of a specific point
lying in the triangle plane can be computed by a simple dot
product of the triangle side 4D vector and the intersection
point 4D vector. The t-value of the intersection point is
simply a negated relation of dot products of the triangle plane
vector and the ray origin and direction, respectively.
The entire ray-triangle intersection code is presented in
figure 3.
float t = planeTime(pl, r);
 if(s.start <= t && t <= vv.z) {
 vec4 ttc = vc.xyxy + vec4(TEX_INCR_TRIGS, 0.0, 2.0 *
TEX_INCR_TRIGS, 0.0);
 vec4 p = pointAt(r, t);
 Plane pa = planeAt(ttc.xy);
 float la = dist(pa, p);
 Plane pb = planeAt(ttc.zw);
 float lb = dist(pb, p);
 float ifl = step(4.0, dot(vec4(float(1.0), float(la >= 0.0),
float(lb >= 0.0), float(la + lb <= 1.004)), vec4(1.0, 1.0, 1.0,
1.0)));
}

Figure 3: Ray-triangle intersection pseudocode.

Note it is provided here with a number of optimizations. The
entire set of variables updated after each triangle intersection
is packed in a single 4D vector variable for the sake of
efficiency. A complicated expression is used to determine
whether or not the ray intersects the triangle. Originally, we
used a simple sequential “and” expression. However, we
replaced it with the one above for the sake of efficiency. For
the same reason, the entire portion of code after computation
of the plane intersection t-value and testing it against the
segment is placed inside a conditional expression. While this
expression is simply ignored on NVIDIA graphics cards, it
yields about 10% additional performance on ATI graphics
boards since the latter provide a special execution unit for
conditional and loop statements.
Another question is choosing a data layout for storing
triangles. One way is to use a common approach and store
separate triangle data for each voxel. This could bring
performance benefits; however, it is likely to increase the
storage requirements greatly as a single triangle may be
shared between multiple voxels (and it is usually so for a fine
enough subdivision). We have therefore chosen to store
triangle data in a separate texture, in which every triangle is

stored only once. Another texture holds lists of references to
the triangles. The lists are contiguous for each voxel, and the
list of references of each voxel occupies only a single line,
not stranding to the next line. This allows us to switch to the
next triangle (or the next object) by simply incrementing the x
coordinate of the texture address. This also allows reducing
the overhead of additional reference since the addresses are
stored in a 2-component form. As 16-bit floating point values
are used to store addresses, only little amount of memory is
required to store addresses, no more than normally on a PC
for storing pointers. On the other hand the storage overhead
for triangle data is greatly reduced. The same approach is
used for storing pointers to the instances of the scene
subdivision.

5. RESULTS
The GPU ray tracing approach has been implemented in
Visual C# 2.0 and .NET 2.0 language using Microsoft Visual
Studio 2005. OpenGL 2.0 [17] has been used as a graphics
API. The shader has been written in GLSL v. 1.10 [22].
GLSL has been preferred to other GPU shader languages
(HLSL and Cg) due to its more direct support for the features
available in modern graphics hardware (such as break
instructions).
Although C# is typically considered not a fast language for
scientific programming, it proved to be fast enough for our
purposes. Moreover, GPU performance is far more critical in
our applications, so, C# overhead is insignificant.
The performance of our approach has been measured on a
number of test scenes. As our ray tracing approach provides
support for moving objects, moving objects has also been
tested. Since ray tracing itself is actually a major bottleneck in
our approach, moving various objects does not affect
significantly the performance of our application.
The parameters of our test scenes are summarized in table 1.
The performance is given in table 2.

Table 1. Parameters of the scenes used for testing.

scene #trigs #insts #lights

Chair_wood 33404 11 1

PalmPC 13532 7 1

Balls-1 31200 10 2

Knife 1676 1 1

SR71A 4446 1 1

Palace 33000 36 1

Table 2. Performance of our ray tracing system on a number
of test scenes.

Scene Performance (fps)

Chair_wood 12.8

PalmPC 6.3

Balls-1 5.8

Knife 16

SR71A 7.9

Palace 10.1

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figures 4, 5, 6 and 7 present some of the images generated.
All tests were run on a PCI-E ATI X1800 XL graphics card
with no clocking. Images were rendered at 512x512
resolution.

Figure 4: The Balls-1 scene image rendered using our
approach. Note the interreflections between the two reflecting
spheres. As the spheres are moved, the interreflections are
fully recomputed interactively as the scene is rendered with
ray tracing.

Figure 5: The wooden chair scene rendered using our
approach. Note the shadow cast from a distant light source by
the back of the chair.

6. DISCUSSION AND POSSIBLE FUTURE
WORK
We have implemented a GPU ray tracing system which
outperforms existing GPU ray tracers and demonstrates
performance which is roughly comparable with highly
optimized CPU ray tracers. Our system is also able to support
moving objects, a feature which previous GPU ray tracers
lack Although it is interactive, it still does not provides real-
time ray tracing on a single computer.
This case study has shown that modern GPUs are suitable not
only for streaming programming with short shaders, but also
for writing much more complex programs which perform
complex computations, such as entire ray tracing, in a single
pass.

Figure 6: The palace scene.

Although complex branching can create some overhead,
single-pass implementation pays off in terms of memory
bandwidth. Unlike streaming programming, it does not
generate a large amount of graphics memory bandwidth, but
is rather computationally-bound. This can be viewed as a
drawback; however, it can also be viewed as the advantage of
the approach. Typically, increasing the computational power
by just adding more pixel shader processors is much simpler
than increasing memory bandwidth. Therefore, our approach
is likely to benefit significantly from the ATI X1900 graphics
board, which provides 3 times more shader processors. Our
approach is also likely to benefit from the CrossFire solution,
as adaptive load balancing between 2 graphics cards will most
likely double the performance.
There is still room for improvement, however. Approaches
which perform single ray casting instead of entire ray tracing
in a single pass needs to be investigated. Although memory
bandwidth is slightly increased in such approaches, they are
more flexible since they allow more complicated traversal
algorithms. They would also allow separate code for tracing
shadow rays.
The GPU instruction set resembles that of and SSE processor,
such as Pentium 4. Therefore, tracing 4 rays simultaneously is
also worth investigating, which is likely to be performed in
our future work.
Finally, for scenes small enough, a hybrid approach can be
used. It may involve using GPU ray tracing for reflections
computations and common graphics pipeline for other
features (shadows). This may prove much faster in scenes
with not very large number of triangles.

7. ACKNOWLEDGEMENTS

We are thankful to the Department of Computational
Mathematics and Cybernetics and to the Student Microsoft
Technology Lab at CMC MSU for the equipment provided.

8. REFERENCES
[1] General Purpose GPU Computations.
http://www.gpgpu.org
[2] Hendrik P.A. Lensch, Michael Goesele, Philippe
Bekaert, Jan Kautz, Marcus A. Magnor, Jochen Lang, Hans-
Peter Seidel. Interactive Rendering of Translucent Objects.
Proceedings of Pacific Graphics, 2002, pp. 214 – 224,
October 2002.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

http://www.gpgpu.org/

[3] Nathan A. Carr, Jesse D. Hall, John C. Hart. GPU
Algorithms for Radiosity and Subsurface Scattering. Proc.
Graphics Hardware, July 2003.
[4] Chris Trendall, A. James Stewart. General
Calculations using Graphics Hardware, with Application to
Interactive Caustics. 11th Eurographics Workshop on
Rendering, June 2000, pp. 287 – 298.
[5] Tim Purcell, Craig Donner, Mike Cammarano,
Henrik Wann Jensen, Pat Hanrahan. Photon Mapping on
Programmable Graphics Hardware. Graphics Hardware,
2003.
[6] Wei Li, Xiaoming Wei, Arie Kaufman.
Implementing Lattice Boltzmann Computation on Graphics
Hardware. To appear in Visual Computer, (Heidelberg,
Germany), 2003.
[7] Mark J. Harris. Fast Fluid Dynamics Simulation on
the GPU. GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics, Chapter 38. Addison-Wesley,
2004.
[8] Jesse D. Hall, Nathan A. Carr, John C. Hart. Cache
and Bandwidth Aware Matrix Multiplication on the GPU
Tech Report UIUCDCS-R-2003-2328, University of Illinois
Dept. of Computer Science, 2003.
[9] Pete Warden. GPU Image Processing in Apple's
Motion. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation,
Addison-Wesley, 2005.
[10] Thilaka Sumanaweera, Donald Liu. Medical Image
Reconstruction with the FFT. GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation, Addison-Wesley, 2005.
[11] Kyoung-Su Oh, Keechul Jung. GPU
implementation of neural networks, Pattern Recognition, Vol.
37, No. 6, 2004, pp. 1311-1314.
[12] John Owens. Streaming Architectures and
Technology Trends. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose
Computation, Addison-Wesley, 2005.
[13] John D. Owens, David Luebke, Naga Govindaraju,
Mark Harris, Jens Krüger, Aaron E. Lefohn, and Tim Purcell.
A Survey of General-Purpose Computation on Graphics
Hardware. Eurographics 2005, State of the Art Reports,
August 2005, pp. 21-51.
[14] Timothy J. Purcell, Ian Buck, William R. Mark, Pat
Hanrahan. Ray tracing on programmable graphics hardware.
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, Pp. 703 - 712, 2002.
[15] Timothy J. Purcell, Craig Donner, Mike
Cammarano, Henrik Wann Jensen, and Pat Hanrahan. Photon
Mapping on Programmable Graphics Hardware.
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pp. 41-50, 2003.
[16] Emmett Kilgariff, Randima Fernando. The GeForce
6 Series GPU Architecture. GPU Gems 2: Programming

Techniques for High-Performance Graphics and General-
Purpose Computation, Addison-Wesley, 2005.
[17] The OpenGL Graphics System: A Specification
(Version 2.0). http://www.opengl.org
[18] Bui-Tuong Phong. Illumination for computer
generated images, Communications of ACM Vol. 18, Issue 6,
1975, Pp. 311-317.
[19] Turner Whitted. An improved illumination model
for shaded display. Communications of the ACM. Vol. 23,
Issue 6, 1980, Pp. 343 – 349.
[20] A. Fujimoto, K. Iwata. Accelerated Ray Tracing,
Proc. CG Tokyo’85, Pp. 41-65.
[21] Tomas Möller, Ben Trumbore. Fast, minimum
storage ray-triangle intersection. Journal of graphics tools,
Vol. 2(1), Pp. 21-28, 1997.
[22] John Kessenich, Dave Baldwin, Randi Rost.
OpenGL Shading Language. http://www.opengl.org .

About the Authors
Andrew V. Adinetz is a student at the Department of
Computational Mathematics and Cybernetics at Moscow
State University. His research field includes interactive ray
tracing and global illumination, GPGPU programming and
mobile technologies. His phone number is +79262833921.
His contact e-mail is adinetz@cs.msu.su.

Sergey B. Berezin, Ph. D., is an assistant professor at the
Department of Computational Mathematics and Cybernetics
at Moscow State University. His research interests include
hardware accelerated rendering, scientific visualization and
practical and theoretical aspects of Microsoft .NET platform.
E-mail: s_berezin@cs.msu.su.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

http://www.opengl.org/
http://www.opengl.org/
mailto:adinetz@cs.msu.su

