
Physically Accurate Rendering with Coherent Ray Tracing
Andrew Adinetz**, Boris Barladian*, Vladimir Galaktionov*, Lev Shapiro*, Alexey Voloboy*

*Keldysh Institute for Applied Mathematics RAS, Moscow
 **Moscow State University

Abstract

As the processing power of modern CPUs increases,
coherent ray tracing becomes more and more popular, as it
allows significantly accelerating ray tracing using SIMD
instructions. It turns out, however, that as ray tracing is
accelerated, other parts of physically accurate rendering
algorithms tend to become bottlenecks.

In this paper, we introduce a coherent physically
accurate rendering approach, which allows taking advantage
of SIMD capabilities of modern CPUs at every stage of
rendering computations. We demonstrate coherent algorithms
for lighting and material computations as well as for anti-
aliasing and tone mapping. The comparison performed on a
number of test scenes demonstrates significant acceleration
compared to common non-coherent approach.

Keywords: SSE, interactive ray tracing, tone mapping,
antialiasing, texturing, BRDF, photorealistic rendering.

1. Introduction

Coherent ray tracing, that is, tracing a number of rays
simultaneously, has been a subject of scientific research in
recent years. As modern commodity CPUs (central
processing units) appear to support various kinds of SIMD
(Single Instruction Multiple Data) extensions, which allow
performing arithmetic operations on multiple floating point
numbers simultaneously, tracing several rays in parallel
becomes quite natural. Various CPUs offer various SIMD
extensions, such as Intel SSE (Streaming SIMD Extension)
[1], AMD 3DNow! [2] and Motorola AltiVec [3]. Of all
these, only Intel SSE became common for coherent ray
tracing implementation. Currently, there exist multiple SSE
coherent ray tracing projects. One of the most widely known
is [4] by Slusallek, Wald et al., which uses SSE to perform
interactive ray tracing. Another example is the VirtualRay
project [5], which uses SSE for interactive ray tracing of
scenes consisting entirely of spheres. In fact, due to its wide
availability, SSE became a de-facto standard for
implementing coherent ray tracing. Hence both SSE ray
tracing and coherent ray tracing will be used as synonyms
across the paper.

Computer Graphics department of Keldysh Institute for
Applied Mathematics RAS, has a long experience of creating
systems for physically accurate rendering [6], [7], [8]. It has
created a number of applications which support various
aspects of photorealistic rendering. Our scientific research
results were used by Integra Inc. to create commercial
products [9]. As SSE becomes widely available, it becomes
highly desirable to be supported for both interactive and
offline rendering.

It is important to note that ray tracing is an essential,
though not the only part of photorealistic rendering. The latter
also includes modeling of physically accurate surface

properties and physically accurate lighting with complex light
sources. To render scene features with subpixel size correctly,
rendering algorithm must include antialiasing, and tone
mapping is necessary to obtain final images from lighting
simulation results which usually are of high dynamic range.

In this paper, we present an approach which benefits from
SSE support and coherency not only in the process of ray
tracing, but also for shading, tone mapping, lighting etc.
Using SSE instructions gives nearly 4-times acceleration
compared to non-SSE implementation.

The paper is organized as follows. Section 2 briefly
describes the architecture and design of the Inspirer2
rendering system and outlines the main parts of the coherent
ray tracing solution. Section 3 describes the coherent ray
tracer. Section 4 deals with surface materials and BRDFs
(bidirectional reflection distribution functions) in coherent ray
tracing approach. Section 5 describes the support of multiple
types of light sources for coherent ray tracing. Section 6 is
about coherent antialiasing and tone mapping. The
performance of the system is demonstrated on a number of
test scenes and the results are reported in section 7. Section 8
is devoted to the results discussion and possible future work.

2. Outline of the Solution

The physically accurate rendering with coherent ray

tracing is implemented on the basis of Inspirer2 rendering
system (formerly Fly) [10].

This system has been designed to provide support for
both interactive and offline rendering modes. Interactive
mode implementation was based on OpenGL. In interactive
mode, the system, while providing real-time framerates (25 –
30 fps), aims at supporting the best level of physical accuracy
possible at such frame rates. In interactive mode, the system
is able to provide physically accurate shadows from point
light sources and BRDF support for surface material
specification. It is also able to approximate reflections using
environment maps.

In offline rendering mode, it provides physically
accurate rendering using bi-directional ray tracing. It supports
both point and surface light sources with goniodiagrams in
order to create realistic lighting. It also provides support for
materials with complex BRDFs and textures. Rendering is
able of calculating multiple order reflections. For the global
illumination computation, an algorithm based on forward
Monte-Carlo ray tracing (MCRT) is used. The results of
MCRT are stored in illumination maps [11] and used in both
rendering modes.

In fact, both interactive and offline rendering may
benefit from the SSE ray tracing. Offline rendering is likely to
perform 2 – 3 times faster since SSE is able to trace 4 rays in
parallel. As to interactive rendering, SSE ray tracing may be
used in a hybrid approach to provide physically accurate
reflections and refractions over an OpenGL rendered image.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

The Inspirer2 architecture is presented in fig.1. The
design of the architecture has been driven by the necessity of
preserving physical attributes of the scene.

Figure 1: Overview of the system architecture. Generic
Hierarchical scene description with physical attributes is

converted to two Preprocessed Scene Description – one for
OpenGL engine and another for ray tracing engine (including

MCRT).

As it is possible to build several rendering databases
simultaneously for a single scene data base, it becomes easier
to attach a new rendering engine, including one based on
SSE, to the existing browser application.

It has been decided, however, that a new scene rendering
database need not be created to support SSE rendering as
there exists already a database for Monte-Carlo ray tracing.
Instead, this database has been slightly modified, where
necessary, to better support coherent ray tracing. Such
optimizations, however, has not been numerous due to the
fact that MCRT database has been optimized already for the
existing ray tracer.

The coherent ray tracing, as well as other components of
the solution, has been implemented in C++ language. No
assembler has been used. In order to use SSE functionality,
classes have been designed, which presented a high-level
wrapper over the SSE intrinsics provided by the
Microsoft/Intel C++ compiler [12]. As modern compilers tend
to be able to optimize high-level code efficiently, this is not
likely to cause a large loss of performance, while
considerably improving the maintainability of the code
written.

3. Coherent Ray Tracer

Ray tracing is typically considered the most time-
consuming part of any physically accurate algorithm. Whitted
estimated the time spent on ray tracing as 95% of the total
rendering time [13]. For physically accurate rendering, the
relative amount of time spent on ray tracing is less; however,
it is still about 65 – 75%, according to our estimates [14].
This makes the ray tracing process a primary candidate for
SSE optimization.

A common approach to SSE ray tracing optimization is
tracing 4 rays in parallel as SSE performs operations on 4 32-
bit floating point numbers simultaneously.

Conceptually, the algorithm is not changed significantly.
The BSP tree space subdivision technique is used for ray
tracing speedup. So the algorithm consists of both ray
traversal phase and object (or triangle) intersection phase. As
support for moving objects is highly desirable, a two-level
hierarchy is used, similar to [15]. The scene consists of
objects. Each object is a triangle mesh, which has its own
BSP tree (further referred to as second-level BSP tree or
object BSP tree) and a bounding box. The object is placed
into the scene using the transformation matrix. The entire
scene consists of the set of the object bounding boxes, the
scene BSP tree (further referred to as first-level BSP tree) and
the scene bounding box. As only object bounding boxes are
included into the scene tree, the subdivision may seem to be
not as efficient; however, this pays off by providing support
for moving objects. This two-level subdivision may even
improve the subdivision structure in sparse scenes, where it
allows better handling of empty spaces between objects.

Libraries of Lights,
Materials etc.

VRML, TBT,
DFX, 3DS etc.

As up to 4 rays are traced simultaneously, they may take
different code paths in the ray tracing algorithm. As such,
means for temporarily blocking some of the rays is necessary.
In our approach, the mask of currently active rays is used for
this. Typically, it is an SSE value (that is, a quadruple of 32-
bit floating point values), which contains either 0x00000000
or 0xffffffff (bitwise notation) in each of the four positions.
Using the mask allows to block some of the rays, if different
rays take different paths in conditional or loop instructions.
Masks are used for blocking rays which do not traverse the
current object, which do not traverse the current node of the
BSP tree or the first intersection of which has already been
found. Masking is a widely used technique in SSE
programming. In this paper, it is used in almost all
components of our solution. Therefore, a special type has
been designed for SSE mask (QBool type), for the sake of
code maintainability.

The coherent ray tracing algorithm proceeds as follows.
First, all the rays are tested for intersection with the scene
axis-aligned bounding box (AABB). If all the rays miss
AABB, the algorithm immediately reports no intersection. If
some of the rays intersect the AABB, the mask of currently
active rays is updated, and non-intersecting rays are excluded.

Then the algorithm proceeds to BSP traversal. As the
rays which have different direction signs can have different
BSP traversal order, the entire group is split into subgroups
with the same direction signs. Although this reduces the
efficiency of SSE ray tracing, the actual splits occur rather
rarely. Moreover, it can be shown that rays which have a
common intersection point, for instance, primary rays for a
pinhole camera or shadow rays for a point light source,
always have the same traversal order.

After splitting the rays into groups, the algorithm sets the
mask for currently active ray and proceeds to BSP tree
traversal. As the hierarchy is, in fact, two-level, the same
occurs both for the entire scene and for each of the objects
which is being tested for intersection. For each non-leaf node,
the BSP traversal algorithm proceeds as follows. If all of the
rays go only to right or only to left subnode, the algorithm
just updates the current node address and proceeds further
with this subnode. If some of the rays intersect both
subnodes, then the far one is pushed to the stack, the mask of
active rays is updated and the algorithm proceeds with the
near subnode of the current node. Note that due to splitting

Hierarchical
Scene Description

Preprocessed Scene
Description (RT)

Preprocessed Scene
Description (OpenGL)

Lighting Simulation Interactive Rendering

Raytraced Image OpenGL Image

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

rays into groups (see above) the situation where the rays
traverse two nodes in opposite order is impossible. It is
possible, however, that some of the rays traverse both nodes
and some traverse only one of them. In this case, rays which
do not traverse the current node are blocked; they are
activated again only for the other node traversal.

When the algorithm reaches a leaf-node, it proceeds to
the ray-object intersection. For the first level subdivision,
objects are actually scene objects, and the ray is transformed
and proceeds with every object in much the same way it does
with the entire scene. For the second level subdivision,
objects are actually triangles which need be intersected.

Ray-triangle intersection actually uses the modified
projection barycentric test implemented in SSE as described
in [4]. First, it is checked whether the intersection has been
cached. In case of a cache hit, the intersection data (that is,
the t value at the intersection point) are simply taken from the
intersection cache and tested against the current ray segment.
If this test succeeds, then the ray-triangle intersection is
reported.

In case of a cache miss, the entire intersection procedure
is performed. First, the t value at the ray-plane intersection
point is computed for currently active rays. If t is negative for
all active rays, then the procedure returns immediately
reporting no intersection. Otherwise, the active rays mask is
corrected and a pair of coordinates of ray-plane intersection
point is computed. Actually, the coordinates computed
correspond to the axes of the plane to which the triangle
projection is the largest. Barycentric coordinates of this point
are computed and tested for the intersection. If the
intersection occurs, then the t value is checked against the
current ray segment. If it belongs to the current ray segment,
the intersection is reported. The barycentric coordinates are
then written to the shading context (a global structure which
contains shading-related data). The same is performed in case
of a cache hit, if the intersection t value belongs to the current
ray segment.

If the intersection t value does not fall into the current
ray segment, only the cache data are updated. The intersection
t value and the intersection point coordinates are written to
the plane cache and no intersection is reported.

After testing all the objects in the node, those rays which
reported intersection are deactivated, as they need not traverse
any further. If all the objects in the first-level leaf node have
been tested, and intersections have been found for a number
of rays in this node, these intersections are actually
considered first intersections of those rays. After the first
intersection has been found, all intersection data are put into
the shade context.

Figure 2. The BSP and triangles data layout used in our SSE

ray tracer.

Our framework, in fact, requires having 2 intersection
methods. One of them finds only the first intersection of the
ray. The algorithm how it works has been described above.
The other one finds all intersections of the current ray
quadruple. Actually, it proceeds in much the same way as the
first intersection algorithm, those rays which have intersected
the object, are not immediately disabled but rather continue
further – until all intersections for them has been found.

The layout of the scene subdivision and triangle data
(shown in figure 2) is optimized with respect to cache
coherency. Therefore, both children of a BSP tree node are
stored in one memory chunk.

The BSP is constructed using the parameterizable
algorithm described in [16]. As object BSP trees are typically
constructed only once, at the preprocessing stage, more time
is devoted to their construction, which results in faster ray
traversal. On the contrary the first level BSP tree is
constructed often due to object movement. As BSP
subdivision algorithm typically requires superlinear time to
run, less time can be devoted to BSP tree construction.
Therefore, a fast algorithm is used here, which constructs a
less efficient BSP tree, though it does it faster.

 The BSP ray tracer has been run separately for a number
of test scenes. All of the tests are performed on the basis of
the same number of pixel. Figure 3 shows a picture rendered
with SSE ray tracer described here.

Figure 3. A room scene rendered with SSE ray tracer.

4. Surface Materials and BRDFs

As coherent ray tracing gives about 3.5 times speedup
compared to ordinary ray tracing algorithms, other parts of
the physically accurate rendering algorithms can actually
become bottlenecks. As it has been mentioned in the
beginning, the portion of time spent in ray tracing is about
70% total rendering time. SSE ray tracing accelerates the ray
tracing itself about 3 times on the average, therefore its
portion of rendering time is reduced to less than a half. In
order to reduce the whole rendering time in the most effective
way, other components do also need SSE acceleration.

In fact, this problem has been encountered by other SSE
ray tracing projects. In [17], after the authors of the project
implemented ray tracing on SSE, shading actually became a
bottleneck. According to their meaning, even simple Phong
shading can increase rendering time considerably in such a
situation, let alone complex shading algorithms involving
textures and BDFs.

Therefore, the need for implementing coherent material
and BDF processing is clear. Since all previous our
developments were oriented on delivering physically accurate

flags plane flags plane flags plane

Trg_ind Trg_ind Trg_ind Trg_ind … Term_ind

0 1 2

…

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

images rather than creating visually pleasing effects, no
general procedural shading is considered.

A physically accurate material we use typically consists
of the following components:

1. A simple bundle of Phong-like material attributes
2. Reflection and refraction-related attributes
3. Material textures
4. Material BDFs

The first two items are rather straightforward to

implement in SSE. In fact, they involve simple vector and
color operations, which can be easily implemented in SSE.
Lighting computations require tracing shadow, reflection and
refraction rays, but this can be easily accomplished by the
means of efficient SSE ray tracer described above. Texturing
and BDF support not as straightforward to implement in SSE,
however. The aspects of their implementation are described
and discussed separately in two subsequent sections.

4.1. Coherent Texturing.

In our framework, texture is an image applied to an
object to modify its visual appearance. Figure 4 shows an
example of an image with texture rendered using our
framework.

Texture itself belongs to the material, and each face has
a material applied to it. Texture mapping is done by the
means of 2D texture coordinates, which are provided for each
vertex belonging to a textured triangle.

Thus, the texture coordinates at the intersection points
need to be interpolated first of all. This is easily accomplished
for 4 rays simultaneously using the barycentric coordinates
calculated during the intersection point. The texture
coordinates for the triangle vertices are loaded separately for
different intersection triangles and are accumulated using a
mask. The interpolation is performed using SSE instructions.

Figure 4. An example of a texturized Glass1 scene rendered
with our coherent physically accurate algorithm.

The second stage is the interpolation of the texture value

itself. Prior to color loading, the exact coordinates at which to
take texture values must be determined. As the texture are 2D
and use mipmapping, tri-linear filtering needs to be
performed. Therefore, 3 coordinates are to be determined for
each of the active quadruple rays. Calculation of first two
texture coordinates, which correspond to the x and y position
of the texel, are straightforward since they involve only
division and number conversion. To provide the wider
applicability of our solution, we refrain from using SSE 2;
therefore, we model integer numbers by the means of

floating-point ones, and the conversion actually takes place
only when the texture is actually sampled.

The computation of the mipmap coordinate is more
complicated as it involves computing logarithm of the
distance to the viewpoint (the t value of the intersection
point). As the nearest integer to the logarithm is needed rather
than the value of the logarithm itself, it has been decided that
successive division by 2 (that is, multiplication by 0.5 for the
sake of efficiency) be used instead. As the size of the texture
is not very large (typically not more than 1024 x 1024), the
number of mipmap levels is not very large too (not more than
11), so the number of iterations is typically small. In fact, the
loop is likely to terminate in the same number of iterations for
all active the rays of the quadruple since they hit the surface
near to one another. On the other hand the computation of the
approximate value of the logarithm by the means of the
Taylor series, for example, may turn out to be rather
complicated and unstable due to its slow convergence.
Moreover, it would involve normalizing the ray coordinate of
the intersection point by some other value for the series to
converge.

Finally, the inverted tone mapping needs to be
performed since the initial texture image is stored with only 8
bits of precision. This is accomplished in much the same way
as the final tone mapping of the rendered image, which is
discussed in section 6.

Separate tests for only texturing performance were not
fulfilled. The reason is that it can vary greatly for different
surroundings and for different textures, as texture access,
contrary to BDF interpolation (see below), exhibits less
coherence. We believe, however, that due to many
vectorizable operations, the acceleration of about 2.5 times is
achievable.

4.2. Coherent BDFs

Support for complex material properties is crucial for
physically accurate rendering. Most of the objects of
everyday occurrence, such as car paint, wood, plastic and
clothes exhibit complex optical properties which cannot be
explained using Phong model [18] or other simplified
material models. In such cases, a more general model of
surface scattering needs to be used.

In our framework, we use BDFs based on various
physical data. These BDFs can be either measured in a special
setting [19] or calculated based on the material
microstructure, as for clothes [20]. Tabulating seems to be the
only practical way of representing such BDFs. The
framework for BDF tabulation and computations is as
follows.

The BDF is parameterized using angles describing
direction of illumination, observation direction and sample
orientation. Depending on the number of the angles used for
parameterization, the BDF is said to be 3- or 4-dimensional.
The 3D are often referred to as isotropic BDFs and 4D are
called anisotropic BDFs.

The BDFs have distinct features and are of high
dimension, so they can’t be tabulated uniformly for memory
space reasons. As they are tabulated in a non-uniform fashion,
binary search is to be applied for the computation of the BDF
cell in which to interpolate.

The entire algorithm for BDF computation thus proceeds
as follows. First, the BDF angles of the rays are calculated.
This is done using inverse trigonometric functions. Then
binary search is performed to define the BDF interpolation

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

cell. Finally, the value of the BDF is interpolated inside this
cell for the given ray directions.

The algorithms have been proposed to implement all of
the above mentioned in SSE. Interpolation is rather
straightforward to implement in SSE. For inverse
trigonometric functions, an approximation has been used.
Finally, the binary search algorithm has been modified to
handle 4 values simultaneously. The detailed description of
our approach is given in [21].

Explicit BDF performance measurements have been
performed. The dimensions of the anisotropic BDF were 17 x
7 x 17 x 13. The tests were run on the Intel Centrino notebook
with 1800 MHz Mobile Pentium-IV processor and 512 MB of
433 MHz RAM. The timings are given in the table 1.

#calls 100000 200000 400000
non-SSE (sec.) 0.137 0.248 0.495
SSE (sec.) 0.040 0.078 0.156
Acceleration 3.43 3.17 3.17

Table 1. Comparative timings for anisotropic BDF
evaluations with and without SSE.

The acceleration achieved is about 3.2 on the average.

This is less than 4 due to the fact that evaluation of the
tabulated BDF is rather a complicated procedure, which
involves lots of branching in binary searches and the like
algorithms.

It is also important to note that only one material is
processed at a time. If the rays from the same quadruple hit
two or more different materials, they are processed in turn,
with the rays not hitting the current material being blocked.
This allows simplifying the resulting code, as it works with
only one material at a time.

5. Light Sources

In order to have the most efficient physically accurate
coherent rendering, lighting should also be done using SSE
instructions. The term "Lighting" denotes here the process of
computing the incoming light intensity at the given point
rather than visibility determination. As the visibility
determination can be performed efficiently using SSE shadow
ray caster, it is lighting computations which need
acceleration.

We have several types of light sources in our framework.
These can be subdivided into point lights and surface lights.
Surface lights are actually processed using Monte-Carlo
approach, that is, a number of points is randomly generated
on the light source and, based on these points, the intensity of
the light source is determined. In determining the intensity,
each of these points is treated similarly to a point light source,
and the intensity is evaluated using one of the approaches
described below.

The other group includes various point light sources.
They vary from simple ones, such as omnidirectional or spot
light sources, to complex light sources with goniodiagrams.

Figure 5 demonstrates rendering with HDRI lighting in
our framework.

For the simple light sources, implementing coherent
lighting is rather straightforward, although some issues exist.
As in the case of materials, the algorithm works with only one
light source at a time. If by some reason (for example, the
triangle is back-facing with respect to the light) no lighting

computations need be done for some of the rays, they are
simply blocked.

Figure 5. An example of an Inspirer2-rendered image with
HDR panorama.

As only simple computations are performed for most of

the light sources, the same computations are now performed
in SSE for a quadruple of rays. The only light sources
needing change are spot light sources. In order to compute the
falloff, the cosine of the angle needs be computed. We have
found, however, that replacing it with a rough approximation

2
1cos

2x
−≈ϕ

tends to work well as the falloff itself is important rather than
the exact shape of the curve.

The situation is more complicated with point light
sources having goniodiagrams. The goniodiagram is a
common industrial format to represent the outgoing light
intensity of light source in various directions. Its support is
crucial in our framework which aims at physically accurate
rendering. The intensity of the goniodiagram light source is
tabulated in a 2-dimensional non-uniform table, very much
like that of the BDF. In order to evaluate it for the specified
direction, the following computations have to be performed.
First, the spherical coordinates of the ray direction need to be
computed. Second, the exact cell the current ray direction
belongs to has to be determined. Finally, the interpolation of
the light intensity needs to be performed inside the given cell.
These steps correspond exactly to what is done for BDF
interpolation. In fact, both algorithms share a number of
common functions used for both BDF and goniodiagram
evaluation.

The performance testing has been done for various kinds
of light sources. Both SSE and non-SSE rendering have
sufficient accuracy, so images rendered with these two
approaches are virtually indistinguishable. SSE approach,
however, performs more than 3.5 times faster than a non-SSE
one.

 The tests were run on the Pentium 4 2.8 GHz computer
with 1 GB 433MHz memory. The results are summarized in
table 2. All times are given in seconds.

Type of Light non-SSE SSE Acceleration
Omnidirectional 1.137 0.157 7.24
Spot 0.816 0.211 3.87
Parallel 0.444 0.103 4.31
Direct 0.936 0.150 6.24
Linear 6.696 1.149 5.83
Circular 27.936 4.828 5.79
Rectangular 145.252 24.375 5.96

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Goniodiagram 2.573 0.588 4.38
Table 2. Comparative timings for non-SSE and SSE lighting

for different light sources.

For the linear light source, it has been subdivided into 7

point light sources for rendering. For the rectangular light
source, it has been subdivided into 7x3 = 21 light sources for
rendering.

As it can bee seen, for most of the light sources the
acceleration achieved exceeds 4. Actually, only spot light
sources yield less acceleration. For the non-point light
sources, the acceleration is, on the average, greater than for
point ones, for which it varies greatly. It can also be seen that
the goniodiagram light source has less acceleration compared
to an omnidirectional one, for example. This is due to the fact
that goniodiagrams require more complex algorithm to
evaluate.

6. Antialiasing and Tone Mapping

Physically accurate rendering cannot do without tone
mapping and antialiasing. While the former is required to
map the high dynamic range image obtained during rendering
to the limited dynamic range of the monitor, the latter allows
to get sufficiently accurate images of scenes with low-size
details. Moreover, antialiasing is needed just to get visually
pleasing images without jagged borders.

As these two are rather independent procedures, they are
discussed separately in the following subsections.

6.1. Tone Mapping

The tone mapping algorithm is performed as follows.
First of all, a lower-sized copy of the image with high
dynamic range values (that is, with floating-point values) is
computed. This copy is used to compute the logarithmic
average of the intensity. As the image itself may appear not at
precise, it gives the general impression about the light
distribution in the final image, and thus, about the logarithmic
average of the final image. As the final image is updated
iteratively in our antialiasing algorithm (see below), its
logarithmic average cannot be used since it changes
continuously.

The tone mapping method used is in fact the one
described in [22]. The only difficulty with implementing it in
SSE is the power function, needed to compute xy. Since the
number of iterations needed to obtain sufficient precision
depends greatly on the range, the range is desirable to be
reduced. The expression itself can be reformulated:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=)(

ln

)(
)(

)(xMax
xy

y
y

yy exMax
xMax

xxMaxx

where Max(x) is the maximum value of the color obtained
from the low-sized image pre-rendered. As this variable
affects only the precision of computations, this is sufficient.
The domain of the logarithm is thus reduced to [0, 1] and the
domain of the exponent to [-∞, 0]. For the exponent
approximation, a hybrid approach is used. In the [-3.8, 0]
range, Pade approximation [23] is used

168018084020
168018084020

234

234

++−−
++++

=
xxxx
xxxxe x

In that range, it gives sufficient precision (about 1%). In [-14,
-3.8], however, Pade approximation works poorly, so the
table lookup with interpolation is used. A 1024-entry uniform
table is sufficient, providing about 1% precision in the entire
range. As arguments for the exponent typically do not fall
outside the [-14, 0] range in our applications, this approach
works well.
 A similar hybrid approach is used for logarithm
computations. For values greater than 0.17, Pade
approximation is used, while for values between 0 and 0.17
the interpolation lookup table is used instead. This was found
to provide sufficient precision and is also easy to implement
in SSE for both logarithm and exponent computations.

6.2. Antialiasing

Since the coherent physically accurate rendering
algorithm is required to work in an interactive setting, it has
to exhibit convergence and progressiveness. That is, while the
image is still (neither camera nor scene objects move), it must
be updated iteratively and the quality has to increase.
Alternatively, in an offline setting, the image is rendered
progressively and the current image is displayed. When the
user is satisfied (or when the precision objective has been
reached), the rendering is terminated.

Antialiasing is one of the ways of improving the quality
of rendered image. As such, it must possess progressiveness
and adaptivity. Our framework also requires precision
control, as it is required in many industrial applications.
These considerations governed the design of antialiasing
algorithm used.

The algorithm is based on the ability to generate a
sequence of coherent portions of 4 rays which eventually
cover the entire screen with any required density and which
can be generated on different levels of the hierarchy. In fact,
the algorithm starts with a sparse uniform grid of superpixels,
with the size of a superpixel being greater than the size of a
pixel. The span of the ray quadruple generated is governed by
a so-called coherence radius R, which depends on the current
superpixel (or subpixel) size. When the R is decreased, the
level of details at which the current rendering takes place is
increased.

For the generation of samples in the screen plane, the 2-
dimensional Halton sequence [24] is used with base 2k along
x-dimension and base 3n along y-dimension. The number s =
2k3n is called span in our algorithm. Due to the quasi-
periodicity of the Halton sequence, the sequence samples with
indices j, j + s, j + 2s, j + 3s are located nearly to one another
and can thus be traced simultaneously as they are coherent.
The span thus defines the number of rays in a single portion.
In order not to trace the same rays twice, the j index ranges
from 0 to s – 1. The span thus allows us to control the number
of rays generated.

Typically, the coherence radius is inversely proportional
to the span. More precisely,

s
yxR resres

π
=

If sample accuracy is not yet sufficient (see below), a ray

is traced. For four coherently generated samples, 4 coherent
rays are traced simultaneously. Each ray is traced to the end
(i.e. the entire ray stack produced by the ray is traced) and the

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

color calculated is returned. The color is then tone mapped
and written to the screen matrix.

In order to control accuracy, a simple heuristic is used
[25]. There are, in fact, 2 copies of the screen matrix. For
each copy, 2 arrays are stored. The first one is the arrays of
pixel colors. The second one is the number of samples taken
at that pixel. Independently of the current coherence radius
and span, the size of the screen matrix is always the same as
the resolution of the image.

The resulting pixel color is computed based on both
copies of the screen matrix. The difference of the estimates
given by these two matrices is used as a measure of accuracy.
If for the current coherent group of 4 rays the accuracy is
acceptable for all rays, then these rays are not traced.

As the accuracy tends to be unacceptable in those
regions where aliasing takes place, this algorithm efficiently
deals with antialiasing. Moreover, as the size of initial
superpixels can be set to more than one pixel (sizes up to 16 x
24 have been used), in those regions of the image where
lighting changes slowly (on walls, for example), interpolation
may be used to further reduce rendering time. To be eligible
for interpolation, the superpixel has to have the difference
between the values at its corners less than the desired
accuracy.

It has been found out that an adaptive algorithm, even
with antialiasing turned on, can even be faster than classical
algorithm due to superpixel interpolation and adaptability,
thus providing a reasonable speed – quality tradeoff.

7. Results

The algorithms discussed above have been implemented
in C++ language in Visual Studio 2003 development
environment. No assembler has been used for the reasons of
code maintainability. SSE instructions were accessed via
intrinsics, which, in turn, have been wrapped into classes
which provide common functionality.

The performance of the ray tracer has been tested on a
number of test scenes. The tests have been performed on a
dual 933 MHz Pentium III – machine with 1 GB of 133MHz
memory. For 1 CPU tests, one of the processors has been
disabled. All times are given in seconds. Acceleration gives
the ration of time spent by non-SSE renderer in 1 CPU setting
to that of an SSE renderer in 1 CPU setting. All images were
rendered at 1024 x 768 resolution. The rendering times are
given in table 3 and the scene characteristics in table 4. Table
5 compares performance of our approach on single-CPU and
dual-CPU machines. As the number of CPUs double, the
performance increases approximately 1.9 times.

Scene non-

SSE
SSE

(1 CPU)
Acceleration

Car 489.88 82.11 5.97
SPDemo 43.41 2.63 16.51
Glass1 52.66 6.18 8.52
Room2 35.12 4.77 7.36

Table 3. The comparative timings of rendering a 1024 x 768
image with and without using SSE instructions.

Scene № trigs № lights depth
Car 233000 4 2
SPDemo 988 3 2
Glass1 44794 2 2
Room2 12000 4 1

Table 4. The characteristics of the scenes used for testing.

Scene 1 CPU 2 CPU Acceleration
Polo 82.11 41.06 2.00
SPDemo 2.63 1.39 1.89
Glass1 6.18 3.20 1.93
Room2 4.77 2.49 1.91

Table 5. Comparative timings of rendering 1024x768 image
with SSE with 1 and 2 CPUs.

The Car test scene contains measured tabulated BRDF,

transparent and refractive objects. SPDemo and Glass1 scenes
exhibit high reflective complexity. In addition, Glass1 scene
is heavily textured. Ray tracing depth 0 corresponds to tracing
only camera rays, depth 1 means one level of reflection etc.

8. Discussion

We have presented a physically accurate coherent
rendering algorithm which is more than 6 times faster than
common ones. The acceleration achieved is mainly due to the
use of SSE instructions, which gives a speedup of about a
factor of 4. The remaining speedup is due to more careful
selection of algorithms and data structures. It is also partly
due to more time spent on code optimization.

The resulting rendering times do not seem interactive,
although they are rather small. It should be noted, however,
that images were rendered at a resolution 1024x768 with 3
light sources. Reducing the resolution to 512x512 will
decrease the rendering time roughly 3 times (as it almost
linearly depends on the image resolution). Cutting the number
of the light sources in the scene will also decrease the
rendering time.

Figure 7. The Car scene rendered using our approach.

Other direction of SSE ray tracing application is

acceleration of global illumination calculation. In order to
render higher-order indirect illumination the illumination
maps technique is used now. As i-maps are calculated by
Monte-Carlo ray tracing method they can also benefit from
SSE optimizations. However, the rays cast for the
illumination map computation, are far less coherent than
those cast during ordinary ray tracing. Therefore, coherent
algorithms for illumination mapping need to be developed.

Currently, only RGB colors are supported using SSE. It
would be interesting, however, to investigate spectral color
support. As spectral colors are harder to compute (typically,
one spectral color object contains 20 to 40 intensities

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

measured for different wavelengths), this approach does not
seem to be interactive. However, it would allow for faster
rendering of spectral-based effects, which is required in some
areas of industrial rendering. For non-SSE rendering, our
framework currently supports spectral BDFs and materials.

The version of the paper with color illustrations can be
found at
http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.ht
m

Acknowledgements

This work has been supported by the Russian President
“Leading Scientific Schools” grant № RI-112/001/278, RFBR
grant № 05-01-00345 and by the Integra Inc. (Tokyo, Japan).

References
[1] IA-32 Intel Architecture Optimization Reference
Manual, p. 440
http://www.intel.com/design/pentium4/manuals/24896612.pdf
[2] AMD 3DNow! extensions http://www.amd.com/us-
en/Processors/SellAMDProducts/0,,30_177_4458_4513^141
3^2137,00.html
[3] PrPMC800: MPC7410 Processor PMC with AltiVec
Technology
http://www.motorola.com/content/0,,5626,00.html
[4] Ingo Wald, Carsten Benthin, Markus Wagner, Philipp
Slusallek: Interactive Rendering with Coherent Ray Tracing.
Proc. of Eurographics 2001, vol. 20, № 3, pp. 153 – 164.
[5] Virtual Ray Interactive Sphere Ray Tracing Engine,
http://www.virtualray.ru/
[6] Andrei Khodulev, Edward Kopylov: Physically
Accurate Lighting Simulation in Computer Graphics
Software. Proc. GraphiCon'96: The 6-th International
conference on Computer Graphics and Visualization, St.
Petersburg, Russia, July 1-5, 1996. Vol.2, pp.111-119.
[7] Konstantin V. Kolchin, Andrei B. Khodulev: Device-
Independent Rendering in Display Color Space. Proc.
Graphicon’98: The 8-th International Conference on
Computer Graphics and Visualization, Moscow, Russia,
September 7-11, 1998, pp.162-163.
[8] A.G. Voloboi, V. A. Galaktionov, K.A. Dmitriev, and
E.A. Kopylov: Bidirectional Ray Tracing for the Integration
of Illumination by the Quasi-Monte Carlo Method.
Programming and Computer Software, Vol. 30, No. 5, 2004,
pp. 258-265.
[9] Products Page of Integra Inc.
http://www.integra.jp/eng/products/index.htm
[10] A. Ignatenko, B. Barladian, K. Dmitriev, S. Ershov, V.
Galaktionov, I. Valiev, A. Voloboy: A Real-Time 3D
Rendering System with BRDF Materials and Natural
Lighting. Proc. Graphicon’2004: The 14-th International
Conference on Computer Graphics and its Applications,
Moscow, Russia, pp. 159-162.
[11] E.Kopylov, A.Khodulev, V.Volevich: The Comparison
of Illumination Maps Technique in Computer Graphics
Software. Proc. GraphiCon'98: The 8-th International
Conference on Computer Graphics and Visualization,
Moscow, Russia, September 7-11, 1998, pp.146-153.
[12] Intel C++ Compiler Product Page
http://www.intel.com/cd/software/products/asmo-
na/eng/compilers/220009.htm
[13] Turner Whitted: An Improved Illumination Model for
Shaded Display. Communications of ACM, Vol. 23, № 6,
June 1980, pp. 343-349.

[14] Волобой А.Г., Метод компактного хранения
октарного дерева в задаче трассировки лучей.
«Программирование», № 1, 1992, стр. 21-27.
[15] Ingo Wald, Carsten Benthin, Philipp Slusallek: OpenRT
– A Scalable and Flexible Engine for Interactive 3D
Graphics. http://graphics.cs.uni-sb.de/%7Ewald/Publications/
2002_OpenRT/2002_OpenRT.pdf
[16] V. Havran: Heuristic Ray Shooting Algorithms.
Dissertation Thesis, Faculty of Electrical Engineering, Czech
Technical University, Prague, 2000.
[17] Carsten Benthin, Ingo Wald, Philipp Slusallek: A
Scalable Approach to Interactive Global Illumination.
Proceedings of Eurographics 2003, Computer Graphics
Forum, v.22, №3, pp. 621 – 630.
[18] B. Phong: “Illumination for Computer Generated
Pictures”. Communications of the ACM, vol. 18, № 6, 1975,
pp. 311 – 317.
[19] Letunov A. A., Barladian B. H., Zueva E. Yu.,
Veshnevetc V. P., Soldatov S. A.: CCD-based device for
BDF measurements in computer graphics. Proc.
GraphiCon'99: The 9th International Conference on
Computer Graphics and Computer Vision, Moscow, Russia,
1999, pp. 129-135.
[20] Vladimir Volevich, Andrei Khodulev, Edward Kopylov,
Olga Karpenko: An Approach to Cloth Synthesis and
Visualization. Proc. GraphiCon'97: The 7th International
Conference on Computer Graphics and Visualization,
Moscow, Russia, 1997, pp. 45-49.
[21] Адинец А.В., Барладян Б.Х., Волобой А.Г.,
Галактионов В.А., Копылов Э.А., Шапиро Л.З.,
Когерентная трассировка лучей для сцен, содержащих
объекты со сложными светорассеивающими свойствами.
Препринт ИПМ им. М.В. Келдыша РАН № 107, 2005.
[22] B. Kh. Barladian, A.G. Voloboi, V. A. Galaktionov, and
E.A. Kopylov "An Effective Tone Mapping Operator for
High Dynamic Range Images" Programming and Computer
Software, Vol. 30, No. 5, 2004, pp. 266-272.
[23] An article on Pade approximants in MathWorld online
encyclopedia.
http://mathworld.wolfram.com/PadeApproximant.html
[24] H. Niederreiter. Random Number Generation and
Quasi-Monte Carlo Methods. Chapter 4, SIAM,
Pennsylvania, 1992.
[25] V.Volevich, K.Myszkowski, A.Khodulev, E.Kopylov:
Using the Visual Differences Predictor to Improve
Performance of Progressive Global Illumination
Computations. ACM Transactions on Graphics, 2000, v.19,
№ 2, pp.122-161.

About Authors

Andrew V. Adinetz, five course student of the Moscow State
University. E-mail: adi_@mail.ru.

Boris H. Barladian, PhD, senior researcher of the Keldysh
Institute for Applied Mathematics RAS.
E-mail: obb@gin.keldysh.ru.

Vladimir A. Galaktionov, PhD, head of department of the
Keldysh Institute for Applied Mathematics RAS.
E-mail: vlgal@gin.keldysh.ru.

Lev Z. Shapiro, PhD, senior researcher of the Keldysh
Institute for Applied Mathematics RAS.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Alexey G. Voloboy, PhD, senior researcher of the Keldysh
Institute for Applied Mathematics RAS.
E-mail: voloboy@gin.keldysh.ru.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

	About Authors

