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Abstract 
 

As the processing power of modern CPUs increases, 
coherent ray tracing becomes more and more popular, as it 
allows significantly accelerating ray tracing using SIMD 
instructions. It turns out, however, that as ray tracing is 
accelerated, other parts of physically accurate rendering 
algorithms tend to become bottlenecks.  

In this paper, we introduce a coherent physically 
accurate rendering approach, which allows taking advantage 
of SIMD capabilities of modern CPUs at every stage of 
rendering computations. We demonstrate coherent algorithms 
for lighting and material computations as well as for anti-
aliasing and tone mapping. The comparison performed on a 
number of test scenes demonstrates significant acceleration 
compared to common non-coherent approach. 
 
Keywords: SSE, interactive ray tracing, tone mapping, 
antialiasing, texturing, BRDF, photorealistic rendering. 
 
1. Introduction 
 

Coherent ray tracing, that is, tracing a number of rays 
simultaneously, has been a subject of scientific research in 
recent years. As modern commodity CPUs (central 
processing units) appear to support various kinds of SIMD 
(Single Instruction Multiple Data) extensions, which allow 
performing arithmetic operations on multiple floating point 
numbers simultaneously, tracing several rays in parallel 
becomes quite natural. Various CPUs offer various SIMD 
extensions, such as Intel SSE (Streaming SIMD Extension) 
[1], AMD 3DNow! [2] and Motorola AltiVec [3]. Of all 
these, only Intel SSE became common for coherent ray 
tracing implementation. Currently, there exist multiple SSE 
coherent ray tracing projects. One of the most widely known 
is [4] by Slusallek, Wald et al., which uses SSE to perform 
interactive ray tracing. Another example is the VirtualRay 
project [5], which uses SSE for interactive ray tracing of 
scenes consisting entirely of spheres. In fact, due to its wide 
availability, SSE became a de-facto standard for 
implementing coherent ray tracing. Hence both SSE ray 
tracing and coherent ray tracing will be used as synonyms 
across the paper. 

Computer Graphics department of Keldysh Institute for 
Applied Mathematics RAS, has a long experience of creating 
systems for physically accurate rendering [6], [7], [8]. It has 
created a number of applications which support various 
aspects of photorealistic rendering. Our scientific research 
results were used by Integra Inc. to create commercial 
products [9]. As SSE becomes widely available, it becomes 
highly desirable to be supported for both interactive and 
offline rendering.  

It is important to note that ray tracing is an essential, 
though not the only part of photorealistic rendering. The latter 
also includes modeling of physically accurate surface 

properties and physically accurate lighting with complex light 
sources. To render scene features with subpixel size correctly, 
rendering algorithm must include antialiasing, and tone 
mapping is necessary to obtain final images from lighting 
simulation results which usually are of high dynamic range.  

In this paper, we present an approach which benefits from 
SSE support and coherency not only in the process of ray 
tracing, but also for shading, tone mapping, lighting etc. 
Using SSE instructions gives nearly 4-times acceleration 
compared to non-SSE implementation. 

The paper is organized as follows. Section 2 briefly 
describes the architecture and design of the Inspirer2 
rendering system and outlines the main parts of the coherent 
ray tracing solution. Section 3 describes the coherent ray 
tracer. Section 4 deals with surface materials and BRDFs 
(bidirectional reflection distribution functions) in coherent ray 
tracing approach. Section 5 describes the support of multiple 
types of light sources for coherent ray tracing. Section 6 is 
about coherent antialiasing and tone mapping. The 
performance of the system is demonstrated on a number of 
test scenes and the results are reported in section 7. Section 8 
is devoted to the results discussion and possible future work. 

 
2. Outline of the Solution 

 
The physically accurate rendering with coherent ray 

tracing is implemented on the basis of Inspirer2 rendering 
system (formerly Fly) [10].  

This system has been designed to provide support for 
both interactive and offline rendering modes. Interactive 
mode implementation was based on OpenGL. In interactive 
mode, the system, while providing real-time framerates (25 – 
30 fps), aims at supporting the best level of physical accuracy 
possible at such frame rates. In interactive mode, the system 
is able to provide physically accurate shadows from point 
light sources and BRDF support for surface material 
specification. It is also able to approximate reflections using 
environment maps. 

In offline rendering mode, it provides physically 
accurate rendering using bi-directional ray tracing. It supports 
both point and surface light sources with goniodiagrams in 
order to create realistic lighting. It also provides support for 
materials with complex BRDFs and textures. Rendering is 
able of calculating multiple order reflections. For the global 
illumination computation, an algorithm based on forward 
Monte-Carlo ray tracing (MCRT) is used. The results of 
MCRT are stored in illumination maps [11] and used in both 
rendering modes. 

In fact, both interactive and offline rendering may 
benefit from the SSE ray tracing. Offline rendering is likely to 
perform 2 – 3 times faster since SSE is able to trace 4 rays in 
parallel. As to interactive rendering, SSE ray tracing may be 
used in a hybrid approach to provide physically accurate 
reflections and refractions over an OpenGL rendered image. 
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The Inspirer2 architecture is presented in fig.1. The 
design of the architecture has been driven by the necessity of 
preserving physical attributes of the scene.  

 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Overview of the system architecture. Generic 
Hierarchical scene description with physical attributes is 

converted to two Preprocessed Scene Description – one for 
OpenGL engine and another for ray tracing engine (including 

MCRT). 
 

As it is possible to build several rendering databases 
simultaneously for a single scene data base, it becomes easier 
to attach a new rendering engine, including one based on 
SSE, to the existing browser application.  

It has been decided, however, that a new scene rendering 
database need not be created to support SSE rendering as 
there exists already a database for Monte-Carlo ray tracing. 
Instead, this database has been slightly modified, where 
necessary, to better support coherent ray tracing. Such 
optimizations, however, has not been numerous due to the 
fact that MCRT database has been optimized already for the 
existing ray tracer.  

The coherent ray tracing, as well as other components of 
the solution, has been implemented in C++ language. No 
assembler has been used. In order to use SSE functionality, 
classes have been designed, which presented a high-level 
wrapper over the SSE intrinsics provided by the 
Microsoft/Intel C++ compiler [12]. As modern compilers tend 
to be able to optimize high-level code efficiently, this is not 
likely to cause a large loss of performance, while 
considerably improving the maintainability of the code 
written. 
 
3. Coherent Ray Tracer 
 

Ray tracing is typically considered the most time-
consuming part of any physically accurate algorithm. Whitted 
estimated the time spent on ray tracing as 95% of the total 
rendering time [13]. For physically accurate rendering, the 
relative amount of time spent on ray tracing is less; however, 
it is still about 65 – 75%, according to our estimates [14]. 
This makes the ray tracing process a primary candidate for 
SSE optimization.  

A common approach to SSE ray tracing optimization is 
tracing 4 rays in parallel as SSE performs operations on 4 32-
bit floating point numbers simultaneously.  

Conceptually, the algorithm is not changed significantly. 
The BSP tree space subdivision technique is used for ray 
tracing speedup. So the algorithm consists of both ray 
traversal phase and object (or triangle) intersection phase. As 
support for moving objects is highly desirable, a two-level 
hierarchy is used, similar to [15]. The scene consists of 
objects. Each object is a triangle mesh, which has its own 
BSP tree (further referred to as second-level BSP tree or 
object BSP tree) and a bounding box. The object is placed 
into the scene using the transformation matrix. The entire 
scene consists of the set of the object bounding boxes, the 
scene BSP tree (further referred to as first-level BSP tree) and 
the scene bounding box. As only object bounding boxes are 
included into the scene tree, the subdivision may seem to be 
not as efficient; however, this pays off by providing support 
for moving objects. This two-level subdivision may even 
improve the subdivision structure in sparse scenes, where it 
allows better handling of empty spaces between objects. 

Libraries of Lights, 
Materials etc.  

VRML, TBT, 
DFX, 3DS etc. 

As up to 4 rays are traced simultaneously, they may take 
different code paths in the ray tracing algorithm. As such, 
means for temporarily blocking some of the rays is necessary. 
In our approach, the mask of currently active rays is used for 
this. Typically, it is an SSE value (that is, a quadruple of 32-
bit floating point values), which contains either 0x00000000 
or 0xffffffff (bitwise notation) in each of the four positions. 
Using the mask allows to block some of the rays, if different 
rays take different paths in conditional or loop instructions. 
Masks are used for blocking rays which do not traverse the 
current object, which do not traverse the current node of the 
BSP tree or the first intersection of which has already been 
found. Masking is a widely used technique in SSE 
programming. In this paper, it is used in almost all 
components of our solution. Therefore, a special type has 
been designed for SSE mask (QBool type), for the sake of 
code maintainability. 

The coherent ray tracing algorithm proceeds as follows. 
First, all the rays are tested for intersection with the scene 
axis-aligned bounding box (AABB). If all the rays miss 
AABB, the algorithm immediately reports no intersection. If 
some of the rays intersect the AABB, the mask of currently 
active rays is updated, and non-intersecting rays are excluded. 

Then the algorithm proceeds to BSP traversal. As the 
rays which have different direction signs can have different 
BSP traversal order, the entire group is split into subgroups 
with the same direction signs. Although this reduces the 
efficiency of SSE ray tracing, the actual splits occur rather 
rarely. Moreover, it can be shown that rays which have a 
common intersection point, for instance, primary rays for a 
pinhole camera or shadow rays for a point light source, 
always have the same traversal order. 

After splitting the rays into groups, the algorithm sets the 
mask for currently active ray and proceeds to BSP tree 
traversal. As the hierarchy is, in fact, two-level, the same 
occurs both for the entire scene and for each of the objects 
which is being tested for intersection. For each non-leaf node, 
the BSP traversal algorithm proceeds as follows. If all of the 
rays go only to right or only to left subnode, the algorithm 
just updates the current node address and proceeds further 
with this subnode. If some of the rays intersect both 
subnodes, then the far one is pushed to the stack, the mask of 
active rays is updated and the algorithm proceeds with the 
near subnode of the current node. Note that due to splitting 

Hierarchical 
Scene Description 

Preprocessed Scene 
Description (RT) 

Preprocessed Scene 
Description (OpenGL)

Lighting Simulation Interactive Rendering

Raytraced Image OpenGL Image
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rays into groups (see above) the situation where the rays 
traverse two nodes in opposite order is impossible. It is 
possible, however, that some of the rays traverse both nodes 
and some traverse only one of them. In this case, rays which 
do not traverse the current node are blocked; they are 
activated again only for the other node traversal. 

When the algorithm reaches a leaf-node, it proceeds to 
the ray-object intersection. For the first level subdivision, 
objects are actually scene objects, and the ray is transformed 
and proceeds with every object in much the same way it does 
with the entire scene. For the second level subdivision, 
objects are actually triangles which need be intersected.  

Ray-triangle intersection actually uses the modified 
projection barycentric test implemented in SSE as described 
in [4]. First, it is checked whether the intersection has been 
cached. In case of a cache hit, the intersection data (that is, 
the t value at the intersection point) are simply taken from the 
intersection cache and tested against the current ray segment. 
If this test succeeds, then the ray-triangle intersection is 
reported.  

In case of a cache miss, the entire intersection procedure 
is performed. First, the t value at the ray-plane intersection 
point is computed for currently active rays. If t is negative for 
all active rays, then the procedure returns immediately 
reporting no intersection. Otherwise, the active rays mask is 
corrected and a pair of coordinates of ray-plane intersection 
point is computed. Actually, the coordinates computed 
correspond to the axes of the plane to which the triangle 
projection is the largest. Barycentric coordinates of this point 
are computed and tested for the intersection. If the 
intersection occurs, then the t value is checked against the 
current ray segment. If it belongs to the current ray segment, 
the intersection is reported. The barycentric coordinates are 
then written to the shading context (a global structure which 
contains shading-related data). The same is performed in case 
of a cache hit, if the intersection t value belongs to the current 
ray segment. 

If the intersection t value does not fall into the current 
ray segment, only the cache data are updated. The intersection 
t value and the intersection point coordinates are written to 
the plane cache and no intersection is reported. 

After testing all the objects in the node, those rays which 
reported intersection are deactivated, as they need not traverse 
any further. If all the objects in the first-level leaf node have 
been tested, and intersections have been found for a number 
of rays in this node, these intersections are actually 
considered first intersections of those rays. After the first 
intersection has been found, all intersection data are put into 
the shade context. 

 
Figure 2. The BSP and triangles data layout used in our SSE 

ray tracer. 
 

Our framework, in fact, requires having 2 intersection 
methods. One of them finds only the first intersection of the 
ray. The algorithm how it works has been described above. 
The other one finds all intersections of the current ray 
quadruple. Actually, it proceeds in much the same way as the 
first intersection algorithm, those rays which have intersected 
the object, are not immediately disabled but rather continue 
further – until all intersections for them has been found.  

The layout of the scene subdivision and triangle data 
(shown in figure 2) is optimized with respect to cache 
coherency. Therefore, both children of a BSP tree node are 
stored in one memory chunk.  

The BSP is constructed using the parameterizable 
algorithm described in [16]. As object BSP trees are typically 
constructed only once, at the preprocessing stage, more time 
is devoted to their construction, which results in faster ray 
traversal. On the contrary the first level BSP tree is 
constructed often due to object movement. As BSP 
subdivision algorithm typically requires superlinear time to 
run, less time can be devoted to BSP tree construction. 
Therefore, a fast algorithm is used here, which constructs a 
less efficient BSP tree, though it does it faster. 

 The BSP ray tracer has been run separately for a number 
of test scenes. All of the tests are performed on the basis of 
the same number of pixel. Figure 3 shows a picture rendered 
with SSE ray tracer described here. 
 

 
 

Figure 3. A room scene rendered with SSE ray tracer. 
 
4. Surface Materials and BRDFs 
 

As coherent ray tracing gives about 3.5 times speedup 
compared to ordinary ray tracing algorithms, other parts of 
the physically accurate rendering algorithms can actually 
become bottlenecks. As it has been mentioned in the 
beginning, the portion of time spent in ray tracing is about 
70% total rendering time. SSE ray tracing accelerates the ray 
tracing itself about 3 times on the average, therefore its 
portion of rendering time is reduced to less than a half. In 
order to reduce the whole rendering time in the most effective 
way, other components do also need SSE acceleration. 

In fact, this problem has been encountered by other SSE 
ray tracing projects. In [17], after the authors of the project 
implemented ray tracing on SSE, shading actually became a 
bottleneck. According to their meaning, even simple Phong 
shading can increase rendering time considerably in such a 
situation, let alone complex shading algorithms involving 
textures and BDFs.  

Therefore, the need for implementing coherent material 
and BDF processing is clear. Since all previous our 
developments were oriented on delivering physically accurate 
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images rather than creating visually pleasing effects, no 
general procedural shading is considered. 

A physically accurate material we use typically consists 
of the following components: 

 
1. A simple bundle of Phong-like material attributes 
2. Reflection and refraction-related attributes 
3. Material textures 
4. Material BDFs 

 
The first two items are rather straightforward to 

implement in SSE. In fact, they involve simple vector and 
color operations, which can be easily implemented in SSE. 
Lighting computations require tracing shadow, reflection and 
refraction rays, but this can be easily accomplished by the 
means of efficient SSE ray tracer described above. Texturing 
and BDF support not as straightforward to implement in SSE, 
however. The aspects of their implementation are described 
and discussed separately in two subsequent sections. 

 
4.1. Coherent Texturing. 
 

In our framework, texture is an image applied to an 
object to modify its visual appearance. Figure 4 shows an 
example of an image with texture rendered using our 
framework. 

Texture itself belongs to the material, and each face has 
a material applied to it.  Texture mapping is done by the 
means of 2D texture coordinates, which are provided for each 
vertex belonging to a textured triangle.  

Thus, the texture coordinates at the intersection points 
need to be interpolated first of all. This is easily accomplished 
for 4 rays simultaneously using the barycentric coordinates 
calculated during the intersection point. The texture 
coordinates for the triangle vertices are loaded separately for 
different intersection triangles and are accumulated using a 
mask. The interpolation is performed using SSE instructions. 

 

 
 

Figure 4. An example of a texturized Glass1 scene rendered 
with our coherent physically accurate algorithm. 

 
The second stage is the interpolation of the texture value 

itself. Prior to color loading, the exact coordinates at which to 
take texture values must be determined. As the texture are 2D 
and use mipmapping, tri-linear filtering needs to be 
performed. Therefore, 3 coordinates are to be determined for 
each of the active quadruple rays. Calculation of first two 
texture coordinates, which correspond to the x and y position 
of the texel, are straightforward since they involve only 
division and number conversion. To provide the wider 
applicability of our solution, we refrain from using SSE 2; 
therefore, we model integer numbers by the means of 

floating-point ones, and the conversion actually takes place 
only when the texture is actually sampled. 

The computation of the mipmap coordinate is more 
complicated as it involves computing logarithm of the 
distance to the viewpoint (the t value of the intersection 
point). As the nearest integer to the logarithm is needed rather 
than the value of the logarithm itself, it has been decided that 
successive division by 2 (that is, multiplication by 0.5 for the 
sake of efficiency) be used instead. As the size of the texture 
is not very large (typically not more than 1024 x 1024), the 
number of mipmap levels is not very large too (not more than 
11), so the number of iterations is typically small. In fact, the 
loop is likely to terminate in the same number of iterations for 
all active the rays of the quadruple since they hit the surface 
near to one another. On the other hand the computation of the 
approximate value of the logarithm by the means of the 
Taylor series, for example, may turn out to be rather 
complicated and unstable due to its slow convergence. 
Moreover, it would involve normalizing the ray coordinate of 
the intersection point by some other value for the series to 
converge. 

Finally, the inverted tone mapping needs to be 
performed since the initial texture image is stored with only 8 
bits of precision. This is accomplished in much the same way 
as the final tone mapping of the rendered image, which is 
discussed in section 6.  

Separate tests for only texturing performance were not 
fulfilled. The reason is that it can vary greatly for different 
surroundings and for different textures, as texture access, 
contrary to BDF interpolation (see below), exhibits less 
coherence. We believe, however, that due to many 
vectorizable operations, the acceleration of about 2.5 times is 
achievable. 
 
4.2. Coherent BDFs  
 

Support for complex material properties is crucial for 
physically accurate rendering. Most of the objects of 
everyday occurrence, such as car paint, wood, plastic and 
clothes exhibit complex optical properties which cannot be 
explained using Phong model [18] or other simplified 
material models. In such cases, a more general model of 
surface scattering needs to be used.  

In our framework, we use BDFs based on various 
physical data. These BDFs can be either measured in a special 
setting [19] or calculated based on the material 
microstructure, as for clothes [20]. Tabulating seems to be the 
only practical way of representing such BDFs. The 
framework for BDF tabulation and computations is as 
follows.  

The BDF is parameterized using angles describing 
direction of illumination, observation direction and sample 
orientation. Depending on the number of the angles used for 
parameterization, the BDF is said to be 3- or 4-dimensional. 
The 3D are often referred to as isotropic BDFs and 4D are 
called anisotropic BDFs. 

The BDFs have distinct features and are of high 
dimension, so they can’t be tabulated uniformly for memory 
space reasons. As they are tabulated in a non-uniform fashion, 
binary search is to be applied for the computation of the BDF 
cell in which to interpolate. 

The entire algorithm for BDF computation thus proceeds 
as follows. First, the BDF angles of the rays are calculated. 
This is done using inverse trigonometric functions. Then 
binary search is performed to define the BDF interpolation 
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cell. Finally, the value of the BDF is interpolated inside this 
cell for the given ray directions. 

The algorithms have been proposed to implement all of 
the above mentioned in SSE. Interpolation is rather 
straightforward to implement in SSE. For inverse 
trigonometric functions, an approximation has been used. 
Finally, the binary search algorithm has been modified to 
handle 4 values simultaneously. The detailed description of 
our approach is given in [21].  

Explicit BDF performance measurements have been 
performed. The dimensions of the anisotropic BDF were 17 x 
7 x 17 x 13. The tests were run on the Intel Centrino notebook 
with 1800 MHz Mobile Pentium-IV processor and 512 MB of 
433 MHz RAM. The timings are given in the table 1.  

 
#calls 100000 200000 400000 
non-SSE (sec.) 0.137 0.248 0.495 
SSE (sec.) 0.040 0.078 0.156 
Acceleration 3.43 3.17 3.17 

Table 1. Comparative timings for anisotropic BDF 
evaluations with and without SSE. 

 
The acceleration achieved is about 3.2 on the average. 

This is less than 4 due to the fact that evaluation of the 
tabulated BDF is rather a complicated procedure, which 
involves lots of branching in binary searches and the like 
algorithms. 

It is also important to note that only one material is 
processed at a time. If the rays from the same quadruple hit 
two or more different materials, they are processed in turn, 
with the rays not hitting the current material being blocked. 
This allows simplifying the resulting code, as it works with 
only one material at a time. 
 
5. Light Sources 
 

In order to have the most efficient physically accurate 
coherent rendering, lighting should also be done using SSE 
instructions. The term "Lighting" denotes here the process of 
computing the incoming light intensity at the given point 
rather than visibility determination. As the visibility 
determination can be performed efficiently using SSE shadow 
ray caster, it is lighting computations which need 
acceleration.  

We have several types of light sources in our framework. 
These can be subdivided into point lights and surface lights. 
Surface lights are actually processed using Monte-Carlo 
approach, that is, a number of points is randomly generated 
on the light source and, based on these points, the intensity of 
the light source is determined. In determining the intensity, 
each of these points is treated similarly to a point light source, 
and the intensity is evaluated using one of the approaches 
described below.  

The other group includes various point light sources. 
They vary from simple ones, such as omnidirectional or spot 
light sources, to complex light sources with goniodiagrams.  

Figure 5 demonstrates rendering with HDRI lighting in 
our framework. 

For the simple light sources, implementing coherent 
lighting is rather straightforward, although some issues exist. 
As in the case of materials, the algorithm works with only one 
light source at a time. If by some reason (for example, the 
triangle is back-facing with respect to the light) no lighting 

computations need be done for some of the rays, they are 
simply blocked.  

 

 
 

Figure 5. An example of an Inspirer2-rendered image with 
HDR panorama. 

 
As only simple computations are performed for most of 

the light sources, the same computations are now performed 
in SSE for a quadruple of rays. The only light sources 
needing change are spot light sources. In order to compute the 
falloff, the cosine of the angle needs be computed. We have 
found, however, that replacing it with a rough approximation 

2
1cos

2x
−≈ϕ  

tends to work well as the falloff itself is important rather than 
the exact shape of the curve.  

The situation is more complicated with point light 
sources having goniodiagrams. The goniodiagram is a 
common industrial format to represent the outgoing light 
intensity of light source in various directions. Its support is 
crucial in our framework which aims at physically accurate 
rendering. The intensity of the goniodiagram light source is 
tabulated in a 2-dimensional non-uniform table, very much 
like that of the BDF. In order to evaluate it for the specified 
direction, the following computations have to be performed. 
First, the spherical coordinates of the ray direction need to be 
computed. Second, the exact cell the current ray direction 
belongs to has to be determined. Finally, the interpolation of 
the light intensity needs to be performed inside the given cell. 
These steps correspond exactly to what is done for BDF 
interpolation. In fact, both algorithms share a number of 
common functions used for both BDF and goniodiagram 
evaluation.  

The performance testing has been done for various kinds 
of light sources. Both SSE and non-SSE rendering have 
sufficient accuracy, so images rendered with these two 
approaches are virtually indistinguishable. SSE approach, 
however, performs more than 3.5 times faster than a non-SSE 
one. 

 The tests were run on the Pentium 4 2.8 GHz computer 
with 1 GB 433MHz memory. The results are summarized in 
table 2. All times are given in seconds. 

 
Type of Light non-SSE SSE Acceleration 
Omnidirectional 1.137 0.157 7.24 
Spot 0.816 0.211 3.87 
Parallel 0.444 0.103 4.31 
Direct 0.936 0.150 6.24 
Linear 6.696 1.149 5.83 
Circular 27.936 4.828 5.79 
Rectangular 145.252 24.375 5.96 
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Goniodiagram 2.573 0.588 4.38 
Table 2. Comparative timings for non-SSE and SSE lighting 

for different light sources. 
 
For the linear light source, it has been subdivided into 7 

point light sources for rendering. For the rectangular light 
source, it has been subdivided into 7x3 = 21 light sources for 
rendering.  

As it can bee seen, for most of the light sources the 
acceleration achieved exceeds 4. Actually, only spot light 
sources yield less acceleration. For the non-point light 
sources, the acceleration is, on the average, greater than for 
point ones, for which it varies greatly. It can also be seen that 
the goniodiagram light source has less acceleration compared 
to an omnidirectional one, for example. This is due to the fact 
that goniodiagrams require more complex algorithm to 
evaluate. 

 
6. Antialiasing and Tone Mapping 
 

Physically accurate rendering cannot do without tone 
mapping and antialiasing. While the former is required to 
map the high dynamic range image obtained during rendering 
to the limited dynamic range of the monitor, the latter allows 
to get sufficiently accurate images of scenes with low-size 
details. Moreover, antialiasing is needed just to get visually 
pleasing images without jagged borders. 

As these two are rather independent procedures, they are 
discussed separately in the following subsections. 

 
6.1. Tone Mapping 
 

The tone mapping algorithm is performed as follows. 
First of all, a lower-sized copy of the image with high 
dynamic range values (that is, with floating-point values) is 
computed. This copy is used to compute the logarithmic 
average of the intensity. As the image itself may appear not at 
precise, it gives the general impression about the light 
distribution in the final image, and thus, about the logarithmic 
average of the final image. As the final image is updated 
iteratively in our antialiasing algorithm (see below), its 
logarithmic average cannot be used since it changes 
continuously.  

The tone mapping method used is in fact the one 
described in [22]. The only difficulty with implementing it in 
SSE is the power function, needed to compute xy. Since the 
number of iterations needed to obtain sufficient precision 
depends greatly on the range, the range is desirable to be 
reduced. The expression itself can be reformulated: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅=⎟⎟
⎠

⎞
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⎝

⎛
⋅= )(
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)(
)(

)( xMax
xy

y
y

yy exMax
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xxMaxx  

 
where Max(x) is the maximum value of the color obtained 
from the low-sized image pre-rendered. As this variable 
affects only the precision of computations, this is sufficient. 
The domain of the logarithm is thus reduced to [0, 1] and the 
domain of the exponent to [-∞, 0]. For the exponent 
approximation, a hybrid approach is used. In the [-3.8, 0] 
range, Pade approximation [23] is used 

 

168018084020
168018084020

234

234

++−−
++++

=
xxxx
xxxxe x  

 
In that range, it gives sufficient precision (about 1%). In [-14, 
-3.8], however, Pade approximation works poorly, so the 
table lookup with interpolation is used. A 1024-entry uniform 
table is sufficient, providing about 1% precision in the entire 
range. As arguments for the exponent typically do not fall 
outside the [-14, 0] range in our applications, this approach 
works well.  
 A similar hybrid approach is used for logarithm 
computations. For values greater than 0.17, Pade 
approximation is used, while for values between 0 and 0.17 
the interpolation lookup table is used instead. This was found 
to provide sufficient precision and is also easy to implement 
in SSE for both logarithm and exponent computations.  

 
6.2. Antialiasing 
 

Since the coherent physically accurate rendering 
algorithm is required to work in an interactive setting, it has 
to exhibit convergence and progressiveness. That is, while the 
image is still (neither camera nor scene objects move), it must 
be updated iteratively and the quality has to increase. 
Alternatively, in an offline setting, the image is rendered 
progressively and the current image is displayed. When the 
user is satisfied (or when the precision objective has been 
reached), the rendering is terminated. 

Antialiasing is one of the ways of improving the quality 
of rendered image. As such, it must possess progressiveness 
and adaptivity. Our framework also requires precision 
control, as it is required in many industrial applications. 
These considerations governed the design of antialiasing 
algorithm used. 

The algorithm is based on the ability to generate a 
sequence of coherent portions of 4 rays which eventually 
cover the entire screen with any required density and which 
can be generated on different levels of the hierarchy. In fact, 
the algorithm starts with a sparse uniform grid of superpixels, 
with the size of a superpixel being greater than the size of a 
pixel. The span of the ray quadruple generated is governed by 
a so-called coherence radius R, which depends on the current 
superpixel (or subpixel) size. When the R is decreased, the 
level of details at which the current rendering takes place is 
increased.  

For the generation of samples in the screen plane, the 2-
dimensional Halton sequence [24] is used with base 2k along 
x-dimension and base 3n along y-dimension. The number s = 
2k3n is called span in our algorithm. Due to the quasi-
periodicity of the Halton sequence, the sequence samples with 
indices j, j + s, j + 2s, j + 3s are located nearly to one another 
and can thus be traced simultaneously as they are coherent. 
The span thus defines the number of rays in a single portion. 
In order not to trace the same rays twice, the j index ranges 
from 0 to s – 1. The span thus allows us to control the number 
of rays generated. 

Typically, the coherence radius is inversely proportional 
to the span. More precisely,  

 

s
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If sample accuracy is not yet sufficient (see below), a ray 

is traced. For four coherently generated samples, 4 coherent 
rays are traced simultaneously. Each ray is traced to the end 
(i.e. the entire ray stack produced by the ray is traced) and the 
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color calculated is returned. The color is then tone mapped 
and written to the screen matrix. 

In order to control accuracy, a simple heuristic is used 
[25]. There are, in fact, 2 copies of the screen matrix. For 
each copy, 2 arrays are stored. The first one is the arrays of 
pixel colors. The second one is the number of samples taken 
at that pixel. Independently of the current coherence radius 
and span, the size of the screen matrix is always the same as 
the resolution of the image. 

The resulting pixel color is computed based on both 
copies of the screen matrix. The difference of the estimates 
given by these two matrices is used as a measure of accuracy. 
If for the current coherent group of 4 rays the accuracy is 
acceptable for all rays, then these rays are not traced. 

As the accuracy tends to be unacceptable in those 
regions where aliasing takes place, this algorithm efficiently 
deals with antialiasing. Moreover, as the size of initial 
superpixels can be set to more than one pixel (sizes up to 16 x 
24 have been used), in those regions of the image where 
lighting changes slowly (on walls, for example), interpolation 
may be used to further reduce rendering time. To be eligible 
for interpolation, the superpixel has to have the difference 
between the values at its corners less than the desired 
accuracy. 

It has been found out that an adaptive algorithm, even 
with antialiasing turned on, can even be faster than classical 
algorithm due to superpixel interpolation and adaptability, 
thus providing a reasonable speed – quality tradeoff.  
 
7. Results 
 

The algorithms discussed above have been implemented 
in C++ language in Visual Studio 2003 development 
environment. No assembler has been used for the reasons of 
code maintainability. SSE instructions were accessed via 
intrinsics, which, in turn, have been wrapped into classes 
which provide common functionality.  

The performance of the ray tracer has been tested on a 
number of test scenes. The tests have been performed on a 
dual 933 MHz Pentium III – machine with 1 GB of 133MHz 
memory. For 1 CPU tests, one of the processors has been 
disabled. All times are given in seconds. Acceleration gives 
the ration of time spent by non-SSE renderer in 1 CPU setting 
to that of an SSE renderer in 1 CPU setting. All images were 
rendered at 1024 x 768 resolution. The rendering times are 
given in table 3 and the scene characteristics in table 4. Table 
5 compares performance of our approach on single-CPU and 
dual-CPU machines. As the number of CPUs double, the 
performance increases approximately 1.9 times. 

 
Scene non-

SSE 
SSE 

(1 CPU) 
Acceleration 

Car 489.88 82.11 5.97 
SPDemo 43.41 2.63 16.51 
Glass1 52.66 6.18 8.52 
Room2 35.12 4.77 7.36 

Table 3. The comparative timings of rendering a 1024 x 768 
image with and without using SSE instructions. 

 
Scene № trigs № lights depth 
Car 233000 4 2 
SPDemo 988 3 2 
Glass1 44794 2 2 
Room2 12000 4 1 

Table 4. The characteristics of the scenes used for testing. 
 

Scene 1 CPU 2 CPU Acceleration 
Polo 82.11 41.06 2.00 
SPDemo 2.63 1.39 1.89 
Glass1 6.18 3.20 1.93 
Room2 4.77 2.49 1.91 

Table 5. Comparative timings of rendering 1024x768 image 
with SSE with 1 and 2 CPUs. 

 
The Car test scene contains measured tabulated BRDF, 

transparent and refractive objects. SPDemo and Glass1 scenes 
exhibit high reflective complexity. In addition, Glass1 scene 
is heavily textured. Ray tracing depth 0 corresponds to tracing 
only camera rays, depth 1 means one level of reflection etc. 
 
8. Discussion 
 

We have presented a physically accurate coherent 
rendering algorithm which is more than 6 times faster than 
common ones. The acceleration achieved is mainly due to the 
use of SSE instructions, which gives a speedup of about a 
factor of 4. The remaining speedup is due to more careful 
selection of algorithms and data structures. It is also partly 
due to more time spent on code optimization.  

The resulting rendering times do not seem interactive, 
although they are rather small. It should be noted, however, 
that images were rendered at a resolution 1024x768 with 3 
light sources. Reducing the resolution to 512x512 will 
decrease the rendering time roughly 3 times (as it almost 
linearly depends on the image resolution). Cutting the number 
of the light sources in the scene will also decrease the 
rendering time. 

 

 
Figure 7. The Car scene rendered using our approach. 
 
Other direction of SSE ray tracing application is 

acceleration of global illumination calculation. In order to 
render higher-order indirect illumination the illumination 
maps technique is used now. As i-maps are calculated by 
Monte-Carlo ray tracing method they can also benefit from 
SSE optimizations. However, the rays cast for the 
illumination map computation, are far less coherent than 
those cast during ordinary ray tracing. Therefore, coherent 
algorithms for illumination mapping need to be developed. 

Currently, only RGB colors are supported using SSE. It 
would be interesting, however, to investigate spectral color 
support. As spectral colors are harder to compute (typically, 
one spectral color object contains 20 to 40 intensities 
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measured for different wavelengths), this approach does not 
seem to be interactive. However, it would allow for faster 
rendering of spectral-based effects, which is required in some 
areas of industrial rendering. For non-SSE rendering, our 
framework currently supports spectral BDFs and materials. 

The version of the paper with color illustrations can be 
found at  
http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.ht
m 
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