
GPU-based real time FRep ray casting

Oleg Fryazinov, Alexander Pasko

The National Centre for Computer Animation

Bournemouth University, UK

ofryazinov@bournemouth.ac.uk, pasko@acm.org

Abstract

A new method is presented for rendering general FRep

(functionally represented) models using GPU-accelerated ray

casting. We use the GPU acceleration for all computations in the

rendering algorithm: ray-surface intersection calculation, function

evaluation, and normal vector computation. Performing geometric

intersection calculations in parallel with shading allows us to

combine the whole process of rendering within one fragment

program on GPU. The algorithm is well-suited for modern GPU

and provides good performance with good quality of results; it is

practically memoryless and does not require a powerful CPU.

Keywords: Ray Casting, Real Time, FRep, implicit models,

rendering, visualization, GPU.

1. INTRODUCTION

The function representation (FRep) defines a geometric object by

a single continuous real function of point coordinates as: F(X) ≥ 0

[15], where the function is evaluated while tracing an underlying

tree structure or by running a “black box” evaluation procedure.

Functionally based models are also called implicit models or

implicit surfaces. Methods of constructing implicit models are

developed well enough; however, rendering of these models with

interactive rates remains an open problem.

At present, there are two ways to render FRep models. The first

one is the polygonization, where the surface of a FRep object is

represented approximately with a set of polygons. The second one

is ray-tracing. The polygonization has become popular due to the

intensive development of software and hardware for polygonal

mesh visualization. However, it is memory- and computationally

expensive to generate in real time and moreover it is not robust,

because features like spikes and sharp edges can be lost during the

polygonal mesh generation. Ray-tracing is regarded as more

precise method to visualize FRep models; however it is

computationally expensive to perform in real time too.

In this paper, we present a method of ray-casting (ray-tracing

primary rays only) accelerated using GPUs (graphics processing

units) and specialized for rendering FRep models with interactive

rates. In recent years, the evolution of graphics hardware has

resulted in using graphics cards not only for rendering polygons,

but for solving more general problems. It is due to introduction of

shaders, which are GPU programs for processing vertices and

fragments. Although shaders basically allow for the parallel

calculations of positions of vertices or colors of pixels, they can

be used as programs for more general computations. These

computations can be performed faster on GPUs than similar

computations on CPUs because of using multi-core parallel

processing in modern GPUs.

The ray-tracing algorithm computes the ray-surface intersection

for the particular pixel independently from other pixels; therefore

we can accelerate these computations with parallel processing on

a GPU. In our method, we use GPU for all the necessary

computations: ray-surface intersection calculation, function

evaluation, and calculation of the normal. By performing shading

computations in a shader program we avoid superfluous

computations on CPU and process all the data in one shader pass.

Computation of normals of the FRep surface allows us to use per-

pixel lighting, leading to better surface rendering. Moreover, we

only need to store ray data (two vectors) for each pixel, so our

method is practically memoryless, thereby alleviating the large

memory consumption problems essential to polygonization based

rendering.

 a. b.

Figure 1: Rendering of some FRep objects using our method.

a) stand (virtual shikki), b) sandbox (Hyperfun gallery)

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

By using acceleration on GPU, we achieve ray-tracing

performance competitive with real-time. We also present

techniques for additional accelerations of the ray-tracing

algorithm that allow for further improving its performance.

2. PREVIOUS WORKS

Ray-tracing of functionally based models and especially skeletal

implicit surfaces was examined by many researchers in recent

years. Classical methods of ray-tracing were summarized in [9].

These methods generally are very slow even on modern hardware

and they were improved for different special cases. Thus, in [17]

ray-surface intersection was accelerated using polynomial

approximations of implicit surfaces. The authors of [5] deal with

implicit models represented by tree data structures; rendering was

accelerated due to this restriction on models. For models

represented by tree structures, acceleration was achieved in [10]

because of analytical root finding in the tree leaves with implicit

surface primitives. Although these methods provide good

performance, they are not appropriate for general case objects,

because not each procedural model can be easily represented with

a tree-like structure. In [4] acceleration was achieved for dynamic

scenes, where the previous frame was used as input data for the

current frame. However, rendering of the first frame and finding

the difference between frames remains computationally expensive.

Ray-tracing on GPU is also a well researched area. However, most

papers have focused on polygonal meshes and parametric

surfaces. Thus, GPU-accelerated ray-tracing for triangle meshes

was introduced in [16, 1], where computations were divided

between GPU and CPU because of limitations of graphics

hardware. Further development of GPU-based ray-tracing of

scenes composed of triangle meshes was considered in [2], where

classical recursive ray-tracing was implemented for GPU. In [6],

performance of ray-tracing was improved using kd-trees, in [20]

acceleration of ray-tracing was achieved using threaded bounding

box hierarchy stored as a geometry image. GPU ray-tracing of

volumetric data using graphic hardware was introduced in [12].

The work [14] presented a method of GPU rendering of piecewise

algebraic surfaces.

GPU-accelerated ray-tracing of implicit surfaces was introduced

only for several particular types of surfaces. The work [3]

considered ray-tracing of implicit surfaces defined by radial based

functions. Rendering of quadratic implicit surfaces on GPU was

reviewed in [13]; in [19] effective ray-tracing on GPU was

implemented for objects represented by CSG-trees with pre-

defined primitives; and [8] introduced ray-tracing of discrete

isosurfaces.

3. ALGORITHM DETAILS

The main idea of our algorithm is using GPU for most

calculations in classical ray-tracing algorithms adapted to FRep

objects. As it was mentioned above, the calculation of the ray-

surface intersection for each pixel does not depend on other

pixels. Therefore, we can use parallel calculations in GPU to

accelerate rendering. We use a program called a fragment shader

to perform computations on pixels. We use the fragment shader

program for performing the following:

o Find the ray-surface intersection

o Calculate the surface normal

o Compute shading

The contents of the fragment shader are shown in Figure 2.

The main calculation load is accounted for the function value

calculation at the given point. If we use any classic method such

as Newton root-finding or even dichotomy, we have to calculate

function values for one ray many times. Therefore the main

computations can be divided into two parts:

o Calculation of the function value

o Root finding when the function value is known

The first part concerns the internal model representation. The

second part concerns the ray-surface intersection algorithm. The

part of the shader that calculate the function value depends on the

model and should be re-generated for each new model; the root-

finding part is similar for all the models and depends only on the

selected method of the ray-surface intersection.

For our implementation, we use OpenGL and the shader language

GLSL. Note that we should bare in mind GPU restrictions such as

inability to use recursion or early breaks in functions. Hardware

restrictions depend on current graphics hardware, in this paper we

mention restrictions that we met during the implementation.

Figure 2: Scheme of the fragment shader.

3.1 Model representation

We briefly review how the model can be represented by a

fragment program in GPU. In the function representation any

object can be described by a real value function with real value

Input

Fragment data: texture

coordinate for fragment

Global data: ray direction, eye

position, constants for model

Retrieve ray start

vector from texture

Ray-surface

intersection Calculate

function value

Intersection exists?

Yes No

Return

color =

background

Calculate normal

Perform per-pixel

shading

Return color = color

after shading

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

arguments. This function can be either given by a text file

describing a tree structure (as in BlobTree [5]) or by an evaluation

procedure (HyperFun [11]). In this work, we use HyperFun

objects, because both HyperFun and GLSL are C-alike languages

and the conversion between them can be done easily. Thus, the

model representation in the form of a HyperFun file is converted

to a shader program in GLSL.

The problem in the conversion from HyperFun could be with the

library of primitives and operations, but all the library functions

can be implemented in GLSL without any problem. For example,

we show below how a HyperFun model of a sphere can be

represented with GLSL functions:

HyperFun:

my_model(x[3], a[1])

{

my_model = 9 - x[1]* x[1] - x[2]* x[2] - x[3]* x[3];

}

GLSL:

bool my_model(in vec3 vecX, in vec3 vecA, inout float

fValue)

{

fMyModel = 9-vecX.x*vecX.x-vecX.y* vecX.y-vecX.z*vecX.z;

bool bResult = (fMyModel>=0);

return bResult;

}

Thus, the function related part of the shader can be generated as

follows:

o Check the input file for using library functions

o For the used library functions, include their implementations

into the shader

o Convert objects from the input model to the shader language

In the similar way, practically all HyperFun programs can be

converted to the GLSL representation. As the result we have the

function in the shader that has point coordinates as the input and

the function value as the output.

3.2 Ray-surface intersection

For a FRep model, ray-surface intersection means the search of

zero roots of the defining function along a ray. This process can

be done using either

o Approximate methods, or

o Methods with exact root search or with localization of several

roots and approximate search of the others.

Approximate methods were discussed in detail in [9]. In our

method, we use interval analysis combined with the Newton

method. This method was selected as the easiest one to implement

and relatively robust. Thus, during the generation of the fragment

shader, we add the ray-surface intersection part built with the

following algorithm:

o calculate function value at the first point of the ray

o subdivide the ray into intervals

o for each interval

o calculate the function value at the end of the interval

o compare signs of the function at the beginning of the

interval and at the end

o if signs are different, set the flag of the found root as

true

o if the interval with a root is not found, return the no-

intersection flag

o depending on the interval tolerance calculate the number of

iterations for the Newton method

o at each iteration refine the root with the Newton method

o return the intersection point coordinates

The length of the interval and all needed tolerances are set

manually by the user. Input data for the ray-surface intersection

are given for each pixel and include the ray beginning vector of

coordinates and the ray direction. Moreover, input data can be

reduced up to just the ray beginning vector, because the ray

direction is the same for all primary rays. Thus, in our algorithm

we have only one vector as the input data for each pixel. We store

these data in texture and pass this data to the fragment shader

using rendering a single polygonal primitive with 1:1 pixel-texel

mapping.

The performance of the ray-surface intersection algorithm can be

increased using exact root search. Unfortunately, in general case

we cannot find exact roots, but we can use it as preprocessed data

for some case studies. In section 4.2 we consider details of these

modifications.

3.3 Calculating the surface normal and shading

The result of the fragment shader is the colour of the pixel. Many

applications use graphics hardware to perform advanced per-pixel

shading. We use it also in the generated fragment shader in such

way that shading computations take place together with other

computations considered above.

In addition to global light parameters such as light position and

color, eye position and view direction, we have to calculate the

surface normal vector at the found ray-surface intersection point.

We use an approximate method to calculate the normal locally as:

))(),,(),(),,(),(),,(()(xfzyxfxfzyxfxfzyxfxn −+−+−+−≈ εεε

Note that we have to calculate additional function values for the

normal calculation; therefore the normal calculation procedure

should be inserted after the defining function in the generated

shader. The shading is performed using the Phong method or

similar. In the shading step we can also add procedural texture

using methods, described in [18].

4. RENDERING

In this section we show how rendering of a functionally based

model is performed using the fragment shader generated by our

algorithm. Because of restrictions of modern graphics hardware,

we have to use auxiliary polygonal data for rendering. However,

we can render only a single fit-to-viewport polygon and it is

sufficient for performing the shader calculations.

The standard pipeline for polygonal object processing is shown in

Figure 3.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Figure 3: Standard rendering pipeline

There are two programs in the pipeline; one is applied to vertices

and another one – to fragments. In our algorithm we do not use a

vertex program at all because all the calculations are performed in

the fragment shader. As mentioned above, we use texture as the

container for input data and we apply this texture to the fit-to-

viewport polygon using 1:1 (one pixel – one texel) mapping.

In this work we use the main algorithm for general models and its

modification with pre-processing on CPU for better speed and

quality for case studies. Below we describe these rendering

algorithms in detail.

4.1 Rendering using the fragment shader

The implementation of the rendering algorithm on GPU is a

classical approach from the point of view of general-purpose

calculations technology on GPU, also known as GPGPU [7]. As it

was mentioned above, the auxiliary model for rendering is the

viewport-sized polygon. We also use viewport-sized texture that

we map to this polygon, so we have 1:1 mapping from texel to

pixel. This texture is the data source for our method, and we store

point coordinates in it. The viewing direction and the bounding

box are defined as global variables that we pass to the fragment

shader.

In the fragment shader, we obtain the ray position coordinates

from input data stored in texture, and then calculate the ray-

surface intersection and the normal, and after that in the same

fragment shader we make shading. Return data is pixel color in

output area. If there is no intersection, we shade the pixel to the

background color. As we make shading inside the fragment shader

along with other calculations, we do not have to return anything

to the CPU programs unlike general GPGPU programs. The

rendering process in this case looks as follows (Figure 4):

Figure 4: Rendering using the fragment shader.

Advantages of such a process are:

1. All calculations performed only in the fragment shader, there

are no suspicious calculations. Moreover, we do not encounter

unnecessary rasterization issues, because there is only one

quad (two triangles) as the input data.

2. We can get the best image quality for general functionally

represented models. However, the better quality-lower speed

law is applicable.

3. Shading is performed along with other calculations, so there

are no unnecessary data transfers.

Disadvantages of the described approach:

1. For general models we use interval analysis, so the object has

thin or sharp features, we can skip an interval, where the root

is located. The solution is to decrease the interval length, but

in this case the number of intervals increases and the speed is

reduced.

2. Some GPU cannot handle fragment programs with many

instructions, therefore some complicated models cannot be

rendered with our method.

4.2 Rendering with CPU pre-processing

We use this modification of the general algorithm when the ray-

surface intersections can be calculated at the pre-processing step.

This technology was introduced in [10] for CPU-based rendering.

The pre-processing step on CPU can include:

1) General procedural solution for the ray-surface

intersection points. In this case we just need to substitute

initial data such as ray origin and direction to the provided

solution and find the function root. These calculations can

be executed on GPU and the rendering process looks as

following (Figure 5):

Figure 5: Rendering with CPU preprocessing (procedural

solution).

2) Exact roots. In this case we calculate the roots on CPU,

then calculate normals and perform shading on GPU

(Figure 6):

Figure 6: Rendering with CPU preprocessing (exact roots).

Advantages of this modification:

1) If the exact root finding is possible, the speed of the

rendering and the quality is the best between all these

methods.

Vertex

shader

Vertex

on

object

Rasterization Fragment

shader

Pixel

color

Fragment

shader

generation

(model)

Prepare

data for

current

frame

Render

current frame:

- Render

viewport-size

polygon

- Apply

fragment

shader

(shading only)

Compute

roots and

pass it to

shader

Fragment

shader

generation

(model +

solution)

Prepare

data for

current

frame

Render current frame:

- Render viewport-size

polygon

- Apply fragment shader,

use solution instead of

computations

Fragment

shader

generation

(model)

Prepare

data for

current

frame

Render current frame:

- Render viewport-size polygon

- Apply fragment shader

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

2) The number of operations on GPU is less than in other

modifications, so we can use more complicated models.

Disadvantages:

1) Unfortunately, exact function roots for the ray-surface

intersection cannot be found for an arbitrary model. An

even relatively simple object such as blended union

between two cylinders leads to the root search in

polynomials of degree of 5. In such cases we have to use

approximate methods and the speed with quality can

decrease.

2) If there are many possible roots, problems can occur with

transferring these data from CPU to GPU because of

limits of the data which can be transferred within one

pass.

5. RESULTS

We tested our algorithm implementation with rendering several

relatively simple and more complicated functionally based models

(Figure 1, 7, 8). In the performance results shown below, we use a

standard torus primitive as a simple model. We also used

complicated models from the Virtual Shikki project [11]. For

computations in general methods we use the tolerance value that

produces minimum of artifacts.

Figure 7: Rendering of a torus primitive: real time rotating and

zoom, Phong shading (2 light sources).

Figure 8: Rendering of dynamic model with procedural texturing:

metamorphosis from a rabbit (Hyperfun gallery) to a sandbox

(Hyperfun gallery)

Performance characteristics of our implementation were measured

on a PC with single NVIDIA GeForce 6800 card and Intel

Pentium 4 3.20GHz CPU. According to specifications, this

graphics card can process up to 16 pixels per clock. All models

were rendered on a 256x256 pixels viewport. For comparison

with CPU, we also measure speed characteristics of a CPU-based

ray-tracer implemented in PovRay (namely CPU general) and a

CPU-based ray-tracer with root solving implemented in [10]

(namely CPU, root solving). We provide the result in the

following table, where speed is measured in frames per second

(bigger fps means higher speed).

 CPU,

general

CPU, root

solving

Fragment CPU/Fragment

Torus 0.16 6 30 100

Cup 0.25 N/A 20 60

Rabbit 0.03 4.7 12 50

Sandbox 0.015 N/A 10 N/A

Stand 0.02 N/A 8.56 N/A

It can be seen from the table that with the proposed GPU-based

algorithm we can achieve the substantial acceleration of rendering

(up to five times) compared with the fastest CPU-based method.

 a b

Figure 9: Rendering of a cup model. a) Fragment b)

CPU/Fragment. Note that because of interval method errors we

have bowed edge in the first case.

Adding pre-processing on CPU, when the model allows, brings

further increase in speed with the factor up to three and, in some

cases, improves quality (Figure 9). Another shown advantage of

the GPU-based solution is that it can process general procedural

models, while other methods have limitations on model structure

or complexity.

6. CONCLUSION

In this paper we presented the method of real-time rendering of

general procedural FRep models with GPU-accelerated ray

casting. As it was shown, with this method good image quality

can be obtained along with high rendering speed providing

interactive frame rates. This has been achieved because of:

- Parallel calculations on GPU of intersection points of cast

rays with functionally represented models.

- Depending on the algorithm modification, we can obtain

higher speed along with lower quality for approximate

visualization; also we can use modifications to fit the

algorithm implementation to a concrete graphic card.

- We perform shading in the GPU shader, so we obtain a

model image with per-pixel lighting.

- If the exact root finding is possible, we can increase the

speed of rendering with pre-processing on CPU.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

However, our method has some limitations:

- In our method, we find only the first intersection of the

ray with the surface, so it is not currently possible to

render functionally based models with transparent

materials.

- Traditional methods of texturing will not work in the

fragment shader and in CPU/fragment modifications,

because of binding of texture coordinates to vertices, but

we do not have vertices as the direct ray casting is

performed.

- It is impossible to represent recursively defined models,

because recursion is not supported by modern GPUs.

Probably this possibility will appear in the next-generation

GPUs.

- Modern GPUs can handle many instructions per shader.

However, it still can be insufficient for very complicated

models.

The removal of these limitations and further optimization of the

proposed method is the subject for future research and

development.

7. REFERENCES

[1] N. A. Carr, J. D. Hall, J. C. Hart. GPU Algorithms for

Radiosity and Subsurface Scattering. Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, July 26-27, 2003, San Diego, California

[2] M. Christen. Ray Tracing on GPU. Master's thesis, Univ. of

Applied Sciences Basel (FHBB), 2005

[3] A. Corrigan, H. Quynh Dinh. Computing and Rendering

Implicit Surfaces Composed of Radial Basis Functions on the

GPU. International Workshop on Volume Graphics, June 2005

[4] E. de Groot, B. Wyvill. Rayskip: Faster Ray Tracing of

Implicit Surface Animations. International Conference on

Computer Graphics and Interactive Techniques in Australasia and

Southeast Asia - Graphite 2005, pp 31-37.

[5] M. Fox, C. Galbraith, B. Wyvill. Efficient Use of the BlobTree

for Rendering Purposes. Proceedings of the International

Conference on Shape Modelling & Applications, 2001, p 306.

[6] T. Foley, J. Sugerman. KD-tree acceleration structures for a

GPU raytracer. Proc. SIGGRAPH/Eurographics Workshop on

graphics hardware 2005, pp. 15-2

[7] Mark Harris. GPGPU: Beyond Graphics. NVIDIA GDC

Presentations, 2004

[8] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, M. Gross.

Real-Time Ray-Casting and Advanced Shading of Discrete

Isosurfaces. In Eurographics, Blackwell Publishing, M. Alexa and

J. Marks, Eds., vol. 24.

[9] J. C. Hart. Ray Tracing Implicit Surfaces. Siggraph 93 Course

Notes No 25, pp 1-15.

[10] M. Hašan. An Efficient F-rep Visualization Framework.

Master thesis, Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, Slovakia, August 2003

[11] V. Adzhiev, R. Catwright, E. Fausett, A. Ossipov, A. Pasko,

V. Savchenko. HyperFun project: Language and Software tools

for F-rep Shape Modelling. Computer Graphics & Geometry, vol.

1, No 10, 1999

[12] J. Kruger, R. Westermann. Acceleration Techniques for

GPU-based Volume Rendering. Proceedings of the 14th IEEE

Visualization 2003, pp 38.

[13] C. Lessig. Interaktives Ray-Tracing und Ray-Casting auf

programmierbaren Grafikkarten. Bachelor Thesis, Bauhaus

University Weimar, December 2004

[14] C. Loop, J. Blinn. Real-Time GPU Rendering of Piecewise

Algebraic Surfaces. Proceedings of Siggraph 2006. pp 664-670.

[15] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko. Function

representation in geometric modeling: concepts, implementation

and applications, The Visual Computer, vol.11, No.8, 1995, pp.

429-446.

[16] T. J. Purcell, I. Buck, W. R. Mark, P. Hanraham. Ray

Tracing on Programmable Graphics Hardware. ACM Transactions

on Graphics, Vol.21, Issue 3 (July 2002), pp 703-712.

[17] A. Sherstyuk. Fast Ray Tracing of Implicit Surfaces.

Computer Graphics Forum, 18(2):139-147, 1999

[18] B. Shmitt, A.Pasko, V.Adzhiev, C.Schlick. Constructive

texturing based on hypervolume modelling. Journal of

Visualization and Computer Animation, John Wiley & Sons, Vol.

12, No. 5, 2001, pp. 297-310

[19] R. Toledo, B. Levy. Extending the graphic pipeline with new

GPU-accelerated primitives. Tech report, INRIA (2004)

[20] N. A. Carr, J. Hoberock, K. Crane, J. C. Hart. Fast GPU Ray

Tracing of Dynamic Meshes using Geometry Images. ACM

International Conference Proceeding Series; Vol. 137, pp 203-209

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

