
Discrete attribute-based particle swarm optimization for robust parameter
estimation

Alexey S. Chernyavskiy
State Research Institute of Aviation Systems (FGUP GosNIIAS), Moscow, Russia

achern@gosniias.ru

Abstract
In this paper a new robust estimator based on the discrete-
attribute Particle Swarm Optimization (PSO) is presented. The
proposed algorithm, called SwarmSAC, improves the standard
RANSAC algorithm by making the search for the solution more
guided and less random. The tentative solutions are iteratively
updated using proportional likelihoods taking into account the
best solutions obtained so far. The performance of the new
method is evaluated in the context of image matching based on
epipolar geometry estimation. Results demonstrate that for a fixed
number of iterations, the SwarmSAC algorithm finds more inliers
than the standard RANSAC method. The SwarmSAC method is
generic and can be applied to a number of robust model
estimation tasks.
Keywords: RANSAC, robust model estimation, particle swarm
optimization, image registration.

1. INTRODUCTION

Robust model estimation is an important topic in computer vision.
In image registration, a model such as a transformation matrix is
fit to the data, usually consisting of 2D points coordinates. In
order to get an accurate model, the point coordinates need to be
known with high precision. Point coordinates are often subject to
noise, either because of errors in point positioning by a human
operator or, in case of automatic point matching, due to
ambiguous feature descriptors leading to mismatches.
In case of small errors (noise) in point localization, the problem of
model estimation can be treated by least-squares methods. When
wrong point correspondences (mismatches) are present, least
squares methods are not efficient since the assumption that
measurement errors are generated by the underlying model is
violated.
The data points which are generated by a hypothetical model are
called inliers with respect to that model; other points are called
outliers. Several strategies for classifying points into inliers and
outliers have been proposed in the past. They include filtering of
mismatches [1], [5], as well as robust estimators such as the
widely used RANSAC [6].
RANSAC consists of randomly sampling the data and deriving
hypotheses about the underlying model. Due to its randomness,
many iterations are needed to explore a representative subset of
the noisy data and find a reliable model which will be supported
by most data points. In this paper we propose a technique of
guided sampling based on the Particle Swarm Optimization (PSO)
[8], [3], which guides the search towards samples which are more
likely to produce more inliers.
The structure of this work is the following. In Section 2 several
methods of mismatch removal are described, basic information

about robust model estimation is summarized. Also, we discuss
the motivation of this paper. Section 3 presents the standard
continuous and binary particle swarm optimization (PSO)
algorithm. The new method of robust model estimation
SwarmSAC based on PSO is fully described in Section 4.
Experimental results and the comparison of SwarmSAC with
RANSAC are given in Section 5.

2. BACKGROUND

Mismatches are frequent in automatic image registration. The
reason is that the features (corner points, line junctions, textured
image patches) are described by vectors of parameters
(descriptors) which tend to be ambiguous and far less
discriminative than the human eye. As a result, some points in one
image may be erroneously matched to points in another image
located in a totally different place. Therefore, the problem of
automatic mismatch removal is of great importance.
It is also important that after finding out which points are a true
match, the number of inliers remains high. For camera pose
estimation a large number of inliers assures a more accurate
estimate; in object recognition, a larger number on inliers
provides more support to the object classifier. One way of dealing
with outliers is to filter out all possible mismatches, and then
apply a least-squares method to derive a model that best fits the
remaining points. By denoting as]1,0[∈γ the share of inliers in
the input data, a model estimation method is called robust if it can
estimate the model from data where 1<γ . It is assumed that
mismatches possess some property which sets them apart from the
rest of the points. Locating and removing all such points will
hopefully lead to 1≈γ in the remaining dataset.

The topological filter proposed in [5] tests all sidedness relations
among matched image features. If feature in the first image is
located in the left/right half-plane with respect to the directed line
from to in this image, then its matched counterpart

3c

1c 2c 3c′
should stay on the same side with respect to the directed line from

1c′ to 2c′ in the second image. Otherwise, the sidedness constraint
is violated and a mismatch is possible. A violation score is
computed, the most violating match is removed and the procedure
is repeated again. Authors claim that the method tolerates up to
65% outliers (35.0=γ). This figure was produced for the case
when outliers were uniformly distributed across the image, and,
based on our experience, the tolerance gets lower when there are
regions (such as trees or grass) on an image that generate more
mismatches than other regions. Also, the method has high
complexity of [4], where N is the total number of
data points, and it does not tolerate parallax effects.

)log(2
2 NNO

Another method of mismatch detection is distance filtering used
in [1]. The idea of the method is that the spatial distribution of

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

features in two images should be similar; the distribution itself
can be described as a set of distances from each feature to all the
others. For each feature, a histogram of distance differences
involving this feature and its matched counterpart is computed.
Mismatches are discarded after comparing the histogram entries
to a threshold. This method works well for aerial imagery because
of small viewpoint changes but tends to lose performance in wide-
baseline stereo situations.
The random sampling consensus method (RANSAC, [6]),
proposed more than 25 years ago, follows a different strategy. It
takes samples of minimal size to minimize the probability that
there are outliers among the sampled data. A vector of model
parameters θ is estimated from the data sample, and the score of
this model)(θf is computed by using all data points. Originally,
the score was equal to the number of inliers, with a goal to
maximize it. Other types of cost functions may be used:

Nirf
N

i
i ,...,1 ,))(()(

1

2 == ∑
=

θρθ , (RANSAC)

or (MSAC [14]),

⎪⎩

⎪
⎨
⎧

>

≤
=

22

22
2

 ,1
 ,0

)(
Tr
Tr

r
i

i
iρ

⎪⎩

⎪
⎨
⎧

>

≤
=

222

222
2

 ,
 ,

)(
TrT
Trr

r
i

ii
iρ

where 2T is the outlier rejection threshold, is discrepancy
of data point . The minimization of

2)(θir

ix)(θf is performed by
trial-and-error, without computing its gradient.
Sampling in the context of robust model estimation is reduced to
deciding which points will be more likely to generate a model
which will produce the most inliers. Sampling in RANSAC is
purely random and therefore many trials are to be performed until
an optimal solution is found. It is possible to reduce the
computational cost by means of guided sampling. Guided
sampling should be regarded as a robust technique, while random
sampling should not [10]. In guided sampling the search is
depending on information about reliability of the data points. It is
either provided by the user, or by a preliminary matching routine
(as in PROSAC, [2]) or derived automatically during the sampling
process.
In [12], a systematic trial strategy GASAC was proposed. For
each sample, a fitness function was computed, and new samples
were generated from the current ones based on their fitness using
a genetic algorithm. The GA-based method achieved significant
acceleration over RANSAC without using any prior information.
In this work we propose another technique, also inspired by
natural processes, based on particle swarm optimization. We
demonstrate that the new method allows guiding the search
towards areas in the M-dimensional space such that the quality of
found models is higher, and the convergence to the best solutions
is significantly faster than RANSAC.

3. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population-based
evolutionary computation technique, inspired by the social
behavior of birds [8]. A simple set of rules such as evaluate,
observe, imitate, guide a flock of birds, without apparent leader,
towards a target (usually food, or resting place). These rules,
expressed in mathematical form, may be applied to numerical
optimization.

When looking for a potential solution to an optimization problem,
each M-dimensional solution vector, called a particle,

),...,,(,2,1, Miiii xxx=X is updated by using information about its
current performance, its best previous performance and that of the
whole set of particles { }P

ii 1=X , called a swarm. A fitness function
 measures how well the solution solves the current

problem, and for each particle the best fitness found in
position is kept in an archive. Also, the global best position G
and its fitness value f(G) is preserved. In many PSO realizations,
a local best position within a specified neighborhood is used
instead of the global best. Each particle has an associated vector
of velocity

)(if X iX

iX)(if B

iB

),...,,(,2,1, Miiii vvv=V . Both and are initially
generated randomly and updated according to the following rules:

iX iV

)()(,2,,1,, jijjijijiji xgxbvv −+−+= ϕϕ ,

jijiji vxx ,,, += (continuous PSO)

⎩
⎨
⎧ <

=
otherwise ,0

)(if ,1 ,
,

ji
ji

vSrand
x (binary PSO)

where 1ϕ , 2ϕ and rand are random numbers uniformly distributed
in the interval (0,1); and are the components of particles

 and G correspondingly; is the sigmoid
function. The parameters

jib , jg

iB [1)exp(1)(−−+= zzS]
1ϕ and 2ϕ regulate how likely the

particle will be attracted to the global best solution and its
previous best position.
PSO has been successfully used for a wide range of optimization
problems, including image registration [15]. An advantage of PSO
is that it allows optimization of very complex cost functions
without the need to compute the gradients, which is sometimes
hard or impossible. Several researchers have generalized PSO to
handle variables belonging to discrete sets of integer or real
numbers [11]. In [2] a variant of discrete PSO was introduced, in
which the particles represented unordered non-repeating integer
numbers: in other words particle {1, 5, 8} was treated as
equivalent to {8, 1, 5}. The authors of [2] applied this algorithm
to identify attributes relevant for classification in data mining.
Their discrete attribute-based particle swarm algorithm was
initially devised for the case of variable attribute length. In the
current work, a fixed attribute length M=8 is used. The
application of particle swarm optimization to robust model
estimation is presented in the next section.

4. THE SWARMSAC METHOD FOR ROBUST
MODEL ESTIMATION

4.1 The SwarmSAC algorithm
Suppose that the total number of data points is N, the length of a
sample is M and fix a swarm size (number of particles) as P; N,
M, P > 0. A set of P particles is randomly generated, where each
element is a unique positive integer index varying from 1 to N.
There are no repeating elements within a given particle. After the
initial population is generated, the global best G and personal best
values are computed and stored, along with fitness values. iB

Next, the velocities are computed. The discrete-attribute DPSO
algorithm of [2] deals with proportional likelihoods instead of

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

velocities. Every particle is associated with a 2xN array of
proportional likelihoods. Each of the N elements of the first row
represent the proportional likelihood that a point will be selected.
The second row of shows the indices of points associated with
the respective proportional likelihoods. At the beginning, all
points are equally likely to be selected for the next iteration of the

particle swarm algorithm: . Afterwards, the

array is altered based on whether each particular index from
the second row of is also part of the current personal best and
global best solution. Three constant updating factors

iX iV

iV

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Ni

1

...

...

2
1

1
1

V

iV

iV
0,, >γβα

chosen by the user are used to update the elements of . These
parameters define the influence of , and G to the
adjustment of every element . All indices present in have
their proportional likelihood increased by

iV

iX iB

jiv , iX
α ; additionally all

indices present in and/or G are increased by iB β and γ . For
example, if N=5 and M=3, and , }4,3,2{=iX }2,5,3{=iB ,

, then the updated will be: }4,2,1{=G iV

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++++++
=

5
1

4

1

3
1

2

1

1
1 βαβαγαγ

iV

In our experiments we used the values }9.0 ,5.0 ,3.0{},,{ =γβα .
Next, the first row of is multiplied by uniform random
numbers between 0 and 1. All elements of the first row of are
ranked in decreasing order of value, and the indices of attributes
follow their respective proportional likelihoods. The M indices
from the second row corresponding to the largest proportional
likelihoods are selected to compose a new particle . Indices
that have a higher proportional likelihood are, on average, more
likely to be selected. The above procedure is repeated for all the
particles of a swarm, the personal and global best are updated if
necessary. The algorithm continues until a pre-defined number of
iterations is performed or some other termination criterion is met.
The outline of SwarmSAC is the following:

iV

iV

iX

for i:=1 to P particles in the swarm do

Create as a vector of M random non-repeating indices iX

Generate model hypothesis from iX

Evaluate fitness of model)(if X

iB := , := , update G and iX)(if B)(if X)(Gf

end
for t:=1 to number of swarm iterations do

for i:=1 to P particles in the swarm do

Generate 2xN array iV

Update using , , G, and iV iX iB γβα ,,

Multiply first row of by uniform random numbers from iV

(0,1) and sort according to proportional likelihoods iV

Replace by indexes from corresponding to M largest
likelihoods

iX iV

Generate model hypothesis from iX

Evaluate fitness of model)(if X

Update , G, and if necessary iB)(if B)(Gf

end
end
Return model corresponding to particle G with best fitness

4.2 Computational load
Compared to the standard RANSAC, SwarmSAC requires slightly
more memory and CPU time. Since the particle swarm needs to
store the previously achieved results, memory must be allocated
for: P particles each consisting of M indices (PM integers), P
personal best positions (PM), P values of personal best fitness (P
integers or real numbers – depending on the definition of fitness),
global best particle (M integers), one global best fitness (real
number). In total, 2PM+1 integers and P+1 real numbers will be
stored. One can see that the memory requirements are negligible.
Apart from model estimation and residual computation present
both in RANSAC and SwarmSAC, the CPU time and resources
are spent in SwarmSAC during the velocity computation stage. It
requires PN multiplications and P calls to a sorting procedure.
Sorting is time consuming, but full sorting is not required. Instead
we need to find the largest M elements, and therefore a selection
method based on the HeapSort algorithm [9] is preferred. It has
complexity of)log)((2 MMNO − . Taking into account that

NM << , the overall cost of sorting one swarm becomes
.)log(2 MPNO

Figure 1: Tentative matches before outlier rejection

Figure 2: Inliers satisfying the epipolar constraint found by

SwarmSAC

5. RESULTS

In order to demonstrate the effectiveness of SwarmSAC and
compare its performance with RANSAC, we used a pair of
images containing N=488 tentative point correspondences
obtained from an automatic algorithm using local descriptors. We
then applied SwarmSAC and labeled point as inliers/outliers
according to the epipolar geometry, with displacement
equal to the sum of squared distances of the points from epipolar

2)(θir

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

lines [16], and . The fundamental matrix was estimated
using the normalized eight-point (M=8) algorithm by Hartley [7].
Swarm size of P=20 particles was iterated for 50 iterations, which
gave 1000 calls to model estimation function. Figure 1 shows the
tentative matches, and Figure 2 demonstrates the 178 inliers (36%
of all points) for the image pair; lines point to the place where the
matched counterpart of each feature is located. The maximum
number of inliers was found after 32 swarm iterations, 640
function evaluations.

52 =T

Figure 3: Improvement of the number of inliers averaged over

100 attempts
We then studied how fast SwarmSAC finds the inliers compared
with RANSAC and MSAC. It is important, especially for real-
time systems, to maximize the number of inliers found for a fixed
number of iterations. We run both methods for 100 times and
compute the mean best fitness. RANSAC and MSAC were
iterated 1000 times. Figure 3 shows the number of calls to
functions for fundamental matrix estimation and computation of
residuals plotted along the x-axis, and the largest number of
inliers found so far presented on the y-axis. For a fixed number of
function evaluations, the new method finds 52% more inliers than
the standard RANSAC.

6. CONCLUSION

The use of particle swarm optimization guides the sampling
process towards areas which are more likely to produce more
inliers. Clearly, the new SwarmSAC method achieves better
results for a given number of function evaluations, proving that
guided search outperforms purely random trials.
In the future we plan to compare the performance of standard
RANSAC and our SwarmSAC method on images with various
inlier share γ . It is hoped that for a decreasing γ , SwarmSAC
will outperform RANSAC more and more. Another direction of
research would be to tune parameters of the proportional
likelihood update formula dynamically, based on estimated γ at
each iteration of the swarm; this might also help to escape
occasional local extrema of the cost function. Finally, we plan to
study how the swarm optimization will perform on other popular
cost functions such as the maximum-likelihood (MLESAC, [13]).

7. REFERENCES

[1] Y. Blokhinov and D. Gribov: A new approach to automatic
junction of overlapping aerial imagery data, XXth ISPRS
Congress, Istanbul, Turkey, July 2004.
[2] O. Chum and J. Matas: Matching with PROSAC – Progressive
sample consensus, In Proc. CVPR 2005, pp. 220-226, June 2005.

[3] E.S. Correa, A.A. Freitas and C.G. Johnson: A new discrete
particle swarm algorithm applied to attribute selection in a
bioinformatics data set, In M. Keijzer et al. (Eds.), Proc. Genetic
and Evolutionary Computation Conference (GECCO-2006), pp.
35-42, ACM Press, July 2006.
[4] V. Ferrari: Affine invariant regions++, Diss., Technische
Wissenschaften, Eidgenössische Technische Hochschule ETH
Zürich, Nr. 15549, 2004.
[5] V. Ferrari, T. Tuytelaars and L. Van Gool: Wide-baseline
multiple view correspondences, IEEE Computer Vision and
Pattern Recognition (CVPR), Madison, USA, June 2003.
[6] M.A. Fischler and R.C. Bolles: Random Sample Consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography, In Communications of the ACM,
vol. 24, pp. 381-395, 1981.
[7] R. Hartley: In defense of the eight-point algorithm, IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 19, pp.
580-593, 1997.
[8] J. Kennedy and R.C. Eberhart: Swarm intelligence, Morgan
Kaufmann Publishers, 2001.
[9] D. Knuth: The Art of Computer Programming, Volume 3:
Sorting and Searching, Third Edition. Addison-Wesley, 1997.
[10] P. Meer: Robust techniques for computer vision. Emerging
Topics in Computer Vision, G. Medioni and S. B. Kang (Eds.),
Prentice Hall, pp. 107-190, 2004.
[11] J. Pugh and A. Martinoli: Discrete multi-valued particle
swarm optimization, Proceedings of IEEE Swarm Intelligence
Symposium (2006), pp. 103-110, Indianapolis, USA, May 2006.
[12] V. Rodehorst and O. Hellwich: Genetic Algorithm SAmple
Consensus (GASAC) - A Parallel Strategy for Robust Parameter
Estimation, Proceedings of the 2006 Conference on Computer
Vision and Pattern Recognition Workshop, pp. 103-110, 2006.
[13] P. Torr and A. Zisserman: MLESAC: A new robust estimator
with application to estimating image geometry, Computer Vision
and Image Understanding, vol. 78, pp. 138-156, 2000.
[14] P. Torr and A. Zisserman: Robust computation and
parametrization of multiple view relations, In Proc. ICCV’98, pp.
727-732, 1998.
[15] M.P. Wachowiak, R. Smolikova, Yufeng Zheng, J.M. Zurada
and A.S. Elmaghraby: An approach to multimodal biomedical
image registration utilizing particle swarm optimization, IEEE
Trans. on Evolutionary Computation, vol. 8, pp. 289-301, 2004.
[16] Z. Zhang: Determining the epipolar geometry and its
uncertainty – A review, IJCA, vol. 27, pp. 161-195, 1998.

About the author

Alexey Chernyavskiy received his specialist degree in Applied
Mathematics from Moscow State University, Department of
Computational Mathematics and Cybernetics in 2000. In 2003 he
completed his M.S. degree in Geophysics at the University of
Utah, USA. He now works at the State Research Institute of
Aviation Systems (GosNIIAS) in Moscow, Russia. His contact
email is achern@gosniias.ru .

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

mailto:achern@gosniias.ru

	1. INTRODUCTION
	2. BACKGROUND
	3. PARTICLE SWARM OPTIMIZATION
	4. THE SWARMSAC METHOD FOR ROBUST MODEL ESTIMATION
	4.1 The SwarmSAC algorithm
	4.2 Computational load
	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

