
Implementation of Object Detection Algorithm on Low Performance Embedded
Systems

Karpov Alexey∗

Moscow State University,
Department of mechanics and mechanics

Denis Ivanov†

Russian Systems Corporation

Abstract

Modern object detection algorithms easily achieve real-time perfor-
mance without introducing quality tradeoff on todays desktop com-
puters. However, many typical applications such as video surveil-
lance, traffic management, various safety and aid systems require
the use of embedded systems. This paper presents modifications to
the algorithm by Viola and Jones [2001] and its analysis that al-
lowed to achieve near real-time performance preserving detection
accuracy rates on a real-life embedded system. The system is on
test conducted on the Russian Railways locomotive.

Keywords: object detection, face detection, embedded system

1 INTRODUCTION

Effective in terms of time and quality implementation of various
modern algorithms of computer vision require rather powerful hard-
ware. Any modern desktop computer can suit well providing suf-
ficient performance. At the same time real-life industrial computer
system has to be not only computationally efficient but also capable
to work in the harsh environment, rather small, energy-efficient and
inexpensive (hence it has to have fewer components than a desk-
top). Usually such systems are up to 100 times slower than a mod-
ern desktop computer.

Object detection is one of the tasks that often has to be solved in the
harsh environment with lack of space. This paper focuses on a real-
life application of object detection – a face detection in the cabin of
a vehicle. More specifically detection of the face of the train driver.
This task is an important integral part of the more global problem
– controlling over driver’s behavior and action. The system con-
stantly controls current state of the train and its driver. If something
goes wrong (i.e. driver is missing, incorrect speed, etc.) the system
will generate distress signal for the driver and contact traffic con-
troller. Therefore the detection algorithm has to be rather accurate
in order that the whole safety system be reliable.

The embedded system installed in the cabin of the train is based
on a Texas Instruments TMS320VC33 chip. TMS320VC33 is 32-
bit microprocessor running at 66 MHz with short pipeline. It has
performance of 60 MIPS and nearly 120 MFLOPS. The size of the

∗karpov@fit.com.ru
†denis@rusys.ru

RAM is 1 megabyte. The aim was to achieve under one second
processing time for the detection algorithm.

2 BOOSTED CASCADE ALGORITHM

We have chosen boosted cascade of simple features object detection
algorithm as the base algorithm [Lienhart et al. 2003] [Viola and
Jones 2001] and its implementation from OpenCV1. The algorithm
uses a cascade of small Haar-like feature based classifiers each of
them trained to detect the specified objects and to reject a significant
fraction of the other objects. The input image is partitioned into
many overlapping subwindows of different sizes. The algorithm
classifies each subwindow into either representing the object or not.

The advantages of the algorithm are the following. On the one hand,
relative computational simplicity, independence of time required to
classify one subwindow from its size, overall robustness. On the
other, its flexibility residing on a transparent parametrization and
control of the quality and speed.

The algorithm easily achieved more than 25 fps on a desktop re-
quiring 2 megabytes of the RAM2 to run. Hence, the first obsta-
cle we encountered in implementation of the algorithm on the em-
bedded system was memory consumption. The problem became
more complicated since the minimum size of a data type for the
TMS320VC33 chip was 4 bytes. The difficulties were overcome
using the following ways. The structure of the cascade representa-
tion was refined, data types were changed to smaller (and the cor-
rectness of the algorithm was confirmed), 8 bit images as well as
auxiliary data were packed to 4 bytes blocks. As a result memory
consumption on the embedded system decreased to 600 kilobytes.

However, time required for the algorithm to process single image
with the same parameters as on a desktop was unacceptable. More
specifically up to 6 seconds per frame. In order to increase process-
ing speed the algorithm was modified and analyzed.

2.1 Algorithm Modifications

The algorithm was modified to solve the more certain task. In
fact, it was required to determine the presence of at least one ob-
ject (face) on the image. Therefore, it made possible to decrease
the number of subwindows for classification. More specifically, as
soon as a face was found (a subwindow classified as a face) algo-
rithm stopped. However, such approach led to more false detec-
tions. In to order to reduce this negative effect several additional
tests were performed. The subwindow was moved by 1 pixel from
the initial position in different directions and classified. We have
found out that 2 more detections was enough to confirm that the
original detection was reliable.

Then it was discovered that “big faces” occurred more often than
“small” . That is, most objects tended to be bigger in size than
the minimum that could be detected. Thus, subwindows scanning

1http://opencvlibrary.sourceforge.net/
2on 160 by 120 pixels images

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



was modified to begin with bigger subwindows rather than smallest
possible.

These modifications allowed to increase the performance of the al-
gorithm up to 5 times on the images with faces. On the average
performance increased up to 1.5-2 times depending on the param-
eters on our real-life cabin image sequence. See Figure 1 for the
average time per image on a desktop.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1
.
1

1
.
1
5

1
.
2

1
.
2
5

1
.
3

1
.
3
5

1
.
4

1
.
4
5

1
.
5

1
.
5
5

1
.
6

1
.
6
5

1
.
7

1
.
7
5

1
.
8

1
.
8
5

1
.
9

1
.
9
5

2

T
i
m
e
,
 
m
s

Scale factor

minsize = 30, mod

minsize = 50, mod

minsize = 30, init

minsize = 50, init

Figure 1: Average processing time on a desktop before and after
modifications

2.2 Algorithm Analysis

The algorithm has a set of implicit and explicit parameters which
control its quality and performance. The following analysis was
done based on real-life image sequence (see Figure 2).

Figure 2: Example images from real-life sequence

At first, let us consider the following implicit parameter – number of
stages in the cascade of classifiers, i.e. how many simple classifiers
cascade contains. Obviously the more stages contains cascade the
more time and memory is required to process a single subwindow.
Two cascades were considered. First one had 20 stages, the second
– 22 stages. As a result we have chosen cascade with 20 stages,
since quality difference was insignificant, but memory consumption
for the 20 stages cascade was 30 kilobytes less. The processing time
difference was no more than 5% on the average.

The next implicit parameter is the minimum possible subwindow
size that the cascade can process. It was fixed at 20 by 20 pixels.
The parameters mentioned above can be changed only on the cas-
cade training stage.

Another implicit parameter is the image size. It was fixed at 160
by 120 pixels. Initially, it was supposed that the size of the image
would be 320 by 240 pixels, but we had to reduce it using sim-
ple interpolation due to severe memory amount restrictions. The
processing speed increased thanks to the fact, but also we had to
reduce minimum subwindow size as well as scale factor to main-
tain the quality. Overall, we believe that the fact did not affect the
quality of the detection.

Let us consider the following explicit parameters:

• Minimum subwindow size. Defines a minimum subwindow
that will be processed.

• Scale factor. Defines a factor used to scale minimum possible
subwindow (defined in the cascade).

The following formula was derived in order to estimate processing
speed of the algorithm:

F2∑
p=F1

X(p)Y (p),

F1 =
⌈
logs

w

ow

⌉
=

⌈
logs

h

oh

⌉
,

F2 =
⌊
min

(
logs

Iw − 10

ow
, logs

Ih − 10

oh

)⌋
,

X(p) =

[
Iw − owsp

max (2, sp)

]
, Y (p) =

[
Ih − ohsp

max (2, sp)

]
,

where de is ceiling of a number, bc – flooring of a number, [] –
rounding a number to the closest integer, ow, oh – minimum pos-
sible width and height of a subwindow defined in the cascade,
Iw, Ih– width and height of the image, w, h – explicitly specified
minimum width and height of a subwindow, s – scale factor. The
formula shows the number of subwindows that will be processed
during detection. However, it did not estimate well processing time
of the algorithm, since it did not take into account additional cal-
culations performed when the subwindow was scaled. When the
subwindow is scaled the cascade classifiers are scaled accordingly.
Therefore the formula was slightly changed:

F2∑
p=F1

X(p)Y (p) + C(F2 − F1).

Here the constant C scales time required to do additional calcu-
lations into “subwindows number” measure. We have found from
experimental results that C = 1137. This formula estimates well
the processing time of the algorithm. But it is fair to say that still the
formula is a estimation on the average. It estimates only a simple

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



case. By simple case we mean the following. The modifications
from 2.1 are not taken into account, every subwindow is consid-
ered to be processed only once, since the common version of the
algorithm uses first walk through subwindows to eliminate the non-
objects using only few first classifiers of the cascade. The second
pass is used by the algorithm to process only remaining subwin-
dows with the whole cascade. Nevertheless, high correlation oc-
curs between the average processing time and the calculation result
of the formula. See normalized results in comparison on Figure 3.

Since we have obtained such high correlation it is possible to pre-
dict performance of the algorithm with a set of parameters. Figure
4 shows the result of calculation for the formula for a wider set of
parameters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1
.
1

1
.
1
5

1
.
2

1
.
2
5

1
.
3

1
.
3
5

1
.
4

1
.
4
5

1
.
5

1
.
5
5

1
.
6

1
.
6
5

1
.
7

1
.
7
5

1
.
8

1
.
8
5

1
.
9

1
.
9
5

2

U
n
i
t
l
e
s
s

Scale factor

minsize = 30, measured

minsize = 50, measured

minsize = 30, formula

minsize = 50, formula

Figure 3: Average processing time vs calculated time normalized

One can see that minimum subwindow size greatly affects the pro-
cessing time. Decreasing minimum subwindow height and width
for 10 pixels lead to 50% and more increase of the processing speed
in the most cases. Scale factor also has strong influence on the pro-
cessing time. At first the processing time decreases rapidly, but
after approximately factor 1.3 decreasing slows down, almost sta-
bilizing at the certain level in the end. There is an interesting effect
of increasing the processing time while increasing the scale factor.
The fact is that sometimes increasing the scale factor gives the more
possible subwindow sizes, therefore adding number of them.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1
.
1

1
.
1
5

1
.
2

1
.
2
5

1
.
3

1
.
3
5

1
.
4

1
.
4
5

1
.
5

1
.
5
5

1
.
6

1
.
6
5

1
.
7

1
.
7
5

1
.
8

1
.
8
5

1
.
9

1
.
9
5

2

S
u
b
w
i
n
d
o
w
s

Scale factor

minsize = 20

minsize = 30

minsize = 40

minsize = 50

minsize = 60

Figure 4: The formula calculation result

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1
.
1

1
.
1
5

1
.
2

1
.
2
5

1
.
3

1
.
3
5

1
.
4

1
.
4
5

1
.
5

1
.
5
5

1
.
6

1
.
6
5

1
.
7

1
.
7
5

1
.
8

1
.
8
5

1
.
9

1
.
9
5

2

R
a
t
e

Scale factor

minsize = 30, hits

minsize = 50, hits

minsize = 30, false alarms

minsize = 50, false alarms

Figure 5: Hit vs false alarm rates

Let us discuss how parameters affect the quality of the detection
results. We have focused on the cases when the minimum height
and width of a subwindow equals to 30 and 50 pixels. The choice of
these parameters came from the real-life situation we had come up
against. At first it was required to detect faces with height and width
of at least 50 pixels. Later the requirements changed due to widen
field of view of the camera to more severe – height and width had
to be at least 30 pixels. Simple changing from the minimum size of
subwindow from 50 to 30 pixels without changing the scale factor
led to a dramatic (more than 3 times) drop in the time performance.
From nearly half a second per frame to an unacceptable level of two
seconds per frame. One of the ways to reduce processing time was
increasing the scale factor. However we had to know how it would
affect detection quality.

We have measured quality of the detection on our real life image
sequence (see Figure 5). At first, let us consider hit and false alarm
rates for the different minimum subwindow sizes. One can see that
hit rates decrease up to 20% percent when the minimum subwin-
dow size is increased from 30 to 50 pixels, but false alarms rates
decrease not too much in the most cases. The sequence contains
lots of rather big faces taken before widening the camera’s field of
view. So we expect bigger difference in hit rates between 30 and 50
pixel minimum subwindow size cases.

Now let us consider scale factor influence. One can see that hits
rates generally decline while increasing the scale factor. However,
that decrease is not so fast compared to the decrease of the aver-
age processing time (see Figure 3). False alarm rates also tend to
decrease.

We now turn back to the question of maintaining the same perfor-
mance of the detection algorithm after we had to decrease the min-
imum subwindow size from 50 to 30. One can see, that setting the
minimum size to 30 and the scale factor to 1.85 makes the algorithm
to detect better and while being a bit slower than the initial choice
nevertheless achieve under one second performance (see Table 1).
For our purposes it is very important to have small number of false
alarms. Because it is better to miss detection of the train driver than
detect him when one is absent.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



Parameters minsize = 50, scale = 1.25 minsize=30, scale = 1.25 minsize = 30, scale = 1.85
number of subwindows 4353 14495 5283

hit rate 0.65 0.79 0.74
false alarm rate 0.02 0.07 0.01

Table 1: Performance comparison for the different parameters

3 FUTURE WORK AND CONCLUSION

Although we have achieved under one second performance, we will
try to further decrease the processing time in order to use more ag-
gressive parameters. This can be done using many ways. On of
the most evident and still not exploited ways can be derived from
the fact that we detect faces in a video stream. Hence, we can fur-
ther decrease the number of subwindows by scanning only changed
image area.

All of the techniques mentioned above focused on increasing the
processing speed when the object is presented on the image. There-
fore it would be useful to develop a quick way to detect images that
clearly does not contain the object.

Another aim is derive more precise formula for the processing time
estimation.

The paper has presented techniques that allowed to achieve near
real-time performance of the boosted cascade object detection al-
gorithm on a computer system with a 120 MFLOPS performance
rating. Using thorough analysis of the detection method we have
succeeded to preserve high detection accuracy.

The method have been implemented on the embedded system in-
stalled on the Russian Railways train. Currently testing of the sys-
tem is conducted. It will be an important part of driver’s action
control system. The system is in turn part of the more global rail-
way safety system.

References

LIENHART, R., KURANOV, A., AND PISAREVSKY, V. 2003. Em-
pirical analysis of detection cascades of boosted classifiers for
rapid object detection. In "DAGM-Symposium", "297–304".

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007


