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Abstract 
Traditional approaches to simulate airflow movements in 
buildings are computationally expensive and do not achieve real-
time prediction of results. This paper discusses an Adaptive 
Localization Method (ALM) that significantly minimizes the 
simulation domain to achieve close to real-time predictions. As 
the user interacts with the space by modifying boundary 
conditions (opening a window, etc.), while being immersed in an 
Augmented Reality (AR) environment, the ALM detects the 
changes and narrows down the simulation space significantly for 
re-simulation instantly. This localized space is simulated and the 
newly generated airflow data is updated to corresponding spatial 
nodes for interactive, immersive AR visualization. ALM is 
developed based on a series of simulations conducted to identify 
critical variables that alter the rate of change of velocity, 
magnitude, and temperature of air due to changes in the boundary 
conditions. The ALM based real-time AR model will aid in 
studying “what if” scenarios for buildings, particularly for 
applications such as remodeling and refurbishment to improve 
conditions, etc. 
Keywords: Adaptive Localization Method, Building Simulation, 
Performance Typology, Augmented Reality, Data Visualization. 
 
 

1. INTRODUCTION 

Building simulation technology is used by experts using 
Computational Fluid Dynamics (CFD) to predict behavior of 
buildings such as natural ventilation design, prediction of smoke 
and fire in buildings, indoor air quality assessment, etc. CFD 
applies numerical techniques to solve the Navier–Stokes 
equations for fluid fields and provides an approach to solve the 
conservation equations for mass, momentum, and thermal energy. 
Such visualizatin in Virtual Environments (VE) is an active 
research area, stemming from existing research on Ves and CFD 
data visualization. Virtual Reality (VR) and Augmented Reality 
(AR) form part of today's VEs. Only a few projects have 
investigated the potential of this technology to better understand 
buildings and their behavior in an interactive, immersive AR 
environment [1]. 
In an immersive AR visualization of an indoor thermal 
environment, the user may interact and modify the boundary 
conditions (e.g. increasing the supply inlet temperature or 
velocity, opening / closing of the doors or windows, etc.). This 
may lead to changes in the thermal environment dynamically (e.g. 
direction and magnitude of air and temperature near the supply 
inlet, doors or windows, etc.). As these changes are instantaneous, 
conducting elaborate simulation of the entire space is time 

consuming and will not support such immersive visualization 
applications. This is primarily due to the size of simulation spaces 
and simulation algorithms. While larger simulation spaces may 
take more time to converge to a solution, existing fluid flow 
solvers may not provide results in real-time. Several research 
projects were conducted to simulate fluid flow in real time. Their 
underlying methodology primarily focused on reducing 
simulation time in physically based models, increasing simulation 
speed via hardware programming, employing data filters to sort 
relevant data, and using approximate modeling techniques to 
approximate indoor thermal datasets. Physically based models 
consist of physical equations that govern complex air movements. 
Such models are computationally expensive and cannot be 
employed for real-time applications. Some of the techniques 
followed include using low resolution grids to capture a coarse 
state of pressure and density fields [2], Zero-equation turbulence 
models [3], texture splats for fire animation [4] and motion of hot, 
turbulent gas [5]. Hardware programming allowed significant 
reduction in fluid flow simulation time. Earlier attempts 
employing hardware programming for fluid flow include 
interaction with smoke and fire [6]. In some cases, the simulated 
quantities are stored as textures in order to share the processing 
load [7] in an attempt toward real-time simulations. Chu and Tai 
[8] integrated both physically based models and hardware 
programming to simulate two-dimensional ink dispersion in 
absorbent paper for art creation purposes. Data filters were 
employed to enable rapid exploration of post-processed data. 
Examples of such research include selective visualization [9] and 
feature extraction [10]. Our work attempts to solve this problem 
using a different approach. 
In an effort to generate fairly accurate indoor airflow simulation 
data in real-time, approximate modeling methods using simplified 
fluid flow equations and learning algorithms were developed [11]. 
The models studied the integration of supervised Artificial Neural 
Networks (ANN) and unsupervised Reinforcement Learning (RL) 
algorithms. Although initial tests conducted with learning 
algorithms showed satisfactory results, more research work is 
necessary to increase the accuracy of predicted results. The tests 
also demonstrated that merely employing learning algorithms 
with no association to physical conditions of the thermal 
environment may lead to erroneous results. 
This paper discusses an Adaptive Localization Method that 
significantly minimizes the simulation domain to achieve close to 
real-time predictions of indoor environment. As the user interacts 
with the space by modifying boundary conditions (opening a 
window, etc.) while being immersed in an Augmented Reality 
environment, the ALM detects the changes and significantly 
narrows down the simulation space for instant re-simulation. This 
localized space is simulated and the newly generated airflow data 
is updated to corresponding spatial nodes for interactive, 
immersive AR visualization.  
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2. ADAPTIVE LOCALIZATION METHOD 

The Adaptive Localization Method is an iterative process that 
detects changes to boundary conditions and constructs individual 
volumetric zones within the thermal environment that require re-
simulation. The advantage of such a method is the significant 
cutback in simulation time that would permit changes to 
boundaries to become visible in an immersive environment in real 
time. ALM consists of three modules – performance typology 
mapping, adaptive localization, and node connectivity modules, 
figure 1. While the performance typology mapping module 
establishes room typologies and boundary conditions of the 
system, the adaptive localization module identifies nodes that 
exhibit significant nodal intensity changes that arise from changes 
to boundary conditions. These nodes are connected together to 
form a tree structure in the node connectivity module. The tree 
structure is enclosed in a bounding box that represents the 
volumetric space that needs to be investigated in detail. This 
relationship between changes to performance values and 
bounding box shape can be learned. The reduced volumetric 
space can be simulated in real time and updated accordingly. 

 
Figure 1: Adaptive Localization Method. 

 
 

2.1 Performance Typology Mapping Module 
Performance typology refers to a unique set of room geometries 
and the position / size of openings that exhibit notably different 
thermal behaviors when simulated. A performance typology 
library was generated based on a series of simulations such that 
one of the entities matches any given room geometry.  Currently, 
the typology includes orthogonal room geometry with one to two 
openings located on the walls. Four conditions were identified for 
which the typology was developed – “single opening single wall,” 
“multiple openings single wall,” “multiple openings adjacent 
walls,” and “multiple openings opposite walls,” table 1. The 
performance typology is characterized by geometry and 
performance variables, table 2. The room geometry is defined by 
length, width and height of the room; the openings (window, 
door) are represented by width, height, and the opening’s  
distance from adjacent wall and floor. The performance variables 
include temperature and velocity (magnitude and direction) of air 
entering the room through the opening. Boundary and initial 
conditions form the basis of setting up computational simulation 
for modeling energy mass flow of a system. The internal cell zone 
consists of the fluid (air) and the wall forms as the internal 
surface. 

Table 1: Performance Typology Library (plan view). 
Description   
Single opening 
Single wall 

 
 

 

 
Multiple openings 
Single wall 

 

 
 

 

 

Multiple openings 
Adjacent walls 

 
 

 

Multiple openings 
Opposite walls 

  
Table 2: Geometry and Performance Variables. 

 Variables Parameters 
Geometry   
Room   
Room Length  RL 
Room Width  RW 
Room Height  RH 
Opening   
Opening Location  OX 
Opening Left distance OLmax , OLmin OL 
Opening Right distance ORmax , ORmin OR 
Opening Floor distance OFmax , OFmin OF 
Opening Ceiling distance OCmax , OCmin OC 
   
Performance   
Opening Temperature OTmax , OTmin OT 
Opening Velocity OVmax , OVmin OV 
 
2.2 Adaptive Localization Module 
The adaptive localization component is an iterative approach 
facilitating detection of nodes that significantly change as the 
boundary conditions are altered. These nodes are referred to as 
“change nodes.” As a room is initialized with geometry and 
performance values in the performance typology mapping 
module, it is prepared for CFD simulation using an automated 
process, figure 2.  
The room geometry is meshed to create a three-dimensional 
structured grid that contains ordered set of orthogonal lines. The 
intersection of the grids corresponds to nodes. Gambit software is 
used to create a mesh grid of the geometry. The mesh grid is 
imported to Fluent software for CFD computation. Boundary and 
initial parameters are set based on the entity selected from the 
performance typology.  For CFD simulation of performance 
typology, the openings act as “velocity inlets” with air 
temperature that ranges from 60°F to 72°F and air velocity that 
ranges from 0.5m/sec to 2.0m/sec. The opening temperature and 
velocity are increased at 2°F and 0.5 m/sec intervals respectively. 
CFD simulation is continued until it converges to a solution. The 
resultant thermal dataset for the entity being investigated is stored 
for comparison with the next CFD run. 
As the objective of adaptive localization is to identify “change 
nodes,” the performance variables (temperature and velocity) are 
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perturbed in a linear fashion until there are no substantial “change 
nodes” present in the model. For every change to the boundary, 
the CFD results are compared to previous thermal data to 
establish “change nodes” for that particular performance type. 

 
Figure 2: Automated Adaptive Localization Procedure. 

 
If Data1 and Data2 are two datasets corresponding to changes in 
performance values, equations (1) to (4) compute temperature 
difference, velocity (magnitude) difference, and resultant polar 
and azimuth angles of velocity vector. 
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The “change nodes” identified relate to temperature and velocity 
(magnitude). The process is executed until all entities and changes 
to boundary conditions are studied. In order to understand the 
behavior of “change nodes” and to identify lower and upper 

bounds such that only significant changes are used for comparison 
purposes, parametric studies and sensitivity analyses were 
conducted. In order to visualize “change nodes,” a glyph 
representation was developed, figure 3. The glyph is comprised of 
a sphere and an arrow. While the sphere radius is the summation 
of temperature and velocity differences, the arrow length and 
direction are computed from velocity difference and direction 
respectively. Figure 4 shows “change nodes” with a lower (2.5) 
and upper (6.0) temperature limit and velocity lower (0.02) and 
upper (0.07) limits for a new test case with one “velocity inlet.” 
The datasets used differ in input performance values. This is 
evident from the location of high “change node” intensities near 
the velocity inlet of the room geometry. 

   
Figure 3: (Left) Glyph representation of “change nodes.” 
Figure 4:  (Right) “Change nodes” and room geometry.   

 
Currently, “change nodes” are detected using temperature and 
velocity differentials. A few alterations to the procedure will 
allow combinations of sensitive variables to be perturbed, 
normalized and employed to narrow down such nodes for robust 
detection. These nodes only need to be updated rather than the 
entire spatial system, thereby reducing simulation time 
exponentially. 
 

2.3 Node Connectivity Module 
The node connectivity module allows “change nodes” to be 
grouped collectively based on previously set intensity parameters 
using a “tree growth” procedure. These nodes are then bound 
within a three-dimensional orthogonal enclosure or a bounding 
box. The enclosure is the reduced space that requires further 
simulation.  
To assemble nodes together that share similar criteria, the “tree 
growth” procedure is employed. It uses Breadth First Search 
(BFS) algorithm to search the space for nodes that meet the nodal 
intensity criteria. BFS has been used in Prim’s minimum-
spanning tree algorithm and Dijkstra’s single source shortest-path 
algorithms [12]. BFS expands the search space between 
discovered and undiscovered vertices across the breadth of the 
frontier. The algorithm discovers all nodes at distance “k” before 
discovering any nodes at distance “k+1”. Since the BFS algorithm 
searches for nodes at a distance of “k+1”, the room spatial 
coordinates are normalized such that nodal distance equals “1”.  
Following normalization, the change node with largest value is 
identified. BFS algorithm begins its search breadth-wide and 
connects to form a tree structure until the search criteria are met, 
figure 5. Once the tree structure is defined, the nodes are enclosed 
within a bounding box by computing min-max values along the 
three axes, figure 6.   
Although the “tree growth” procedure detects multiple nodal tree 
structures, only two bounding boxes are drawn that correspond to 
the two most significant spaces in the room that require re-
simulation. Yet, there are instances where either two nodal tree 
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structures or bounding boxes are sufficiently close to form one 
entity. Currently, “trees group” criteria are under development to   
determine if two or more nodal tree structures can be combined to 
form a single bounding box.  
For all nodes n { 
 //Identify Tree_n Parent node 
 (max) Intensity_node = Tree_1 Parent node (i,j,k); 
 From Tree_1 Parent node (i,j,k){ 
  //Breadth First Search algorithm 
  Check  (i,j,k+1),(i,j,k) 
   (i,j+1,k),(i,j-1,k) 
   (i+1,j,k),(i-1,j,k) 
  //Criteria to connect nodes 
  (min) < Intensity_node<(max) 
  Length between nodes == 1 
  Complete Tree_1; 
  //Calculate min-max of nodal axes 
  } 
 Complete Tree_n 
 } 
Figure 5: Code: “Tree Growth” procedure using BFS algorithm. 

 
Figure 6: Bounding Box enclosing tree structure. 

Thus, as ALM iteration proceeds until all variables are exhausted, 
the input geometry and boundary conditions are mapped to newly 
developed bounding boxes. Any change in the boundary 
conditions (“cause”) results in new bounding boxes (“effect”) 
which vary in shape and position. Tests show that changes to 
input conditions and shape of the bounding box are linear. For 
example, as the velocity increases, the bounding box morphs in 
linear fashion. This linear relationship is used to generalize the 
bounding box characteristics which then can be employed 
instantly for any boundary change from initial conditions. Thus, 
ALM allows narrowing down the simulation space exponentially 
for CFD simulation rather than requiring elaborate simulation of 
the entire system. The newly generated airflow data is updated to 
corresponding spatial nodes for interactive, immersive AR 
visualization. 

3. INTEGRATION TO AR SYSTEM 

The multimodal AR system tracks the user’s movement in real 
time and poses graphical representations of CFD simulation 
datasets on the Head Mounted Device (HMD)  for the user to 
visualize and interact with. The multimodal Human Computer 
Interaction (HCI) enables efficient data manipulation by users 
while still being immersed in the visualization of CFD datasets, in 
actual space. It consists of a library of speech and gesture 
recognition tasks that aid in data manipulation. IBM Viavoice was 
employed for speech recognition. The gesture recognition system 
captured global hand motion using trackers attached to the glove 
and local finger motion as a set of joint angles. Using custom-
prepared functions, the hand posture data was transformed into 
commands that allowed data manipulation.  [1] provides detailed 
information of the multimodal immersive AR system. 

4. CONCLUSION 

The paper discussed an Adaptive Localization Method to 
minimize simulation space exponentially. It presented a “tree 
growth” procedure using BFS algorithm to connect “change 
nodes” together to form a bounding box. CFD simulation is 
conducted for this volumetric space and the resultant data is 
updated to the corresponding nodes of the room geometry 
instantly. Thus, ALM allows users to interact with space and 
visualize airflow changes instantly. Currently, ALM permits 
localization for one set of performance typology that comprises of 
up to two openings. The performance variables studied include 
temperature and velocity (magnitude and velocity) of air passing 
through the openings.  Although present tests demonstrate the 
potential of using ALM to narrow down simulation space, a 
robust learning methodology is required to map the changes to 
boundary conditions to the shape of the bounding box. Such a 
learning methodology will permit rapid generation of bounding 
boxes as the input conditions change. Moreover, the present study 
involves one performance typology. Further study with more 
performance typologies including supply air inlet and outlet need 
to be developed. 
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