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Abstract

A hybrid data hiding approach, combining permutation steganog-
raphy and the spatial domain approach, is proposed in this paper.
Message is partially embedded in the cover model by permutation
steganography first, and then the rest of message is embedded in the
vertex by modifying vertex position limited in a voxel. The num-
ber of bits to be embedded in the vertex is adaptive in light of the
degree of model distortion and visual perception to the stego model
preferred.

As compared with previous data hiding methods for 3D models,
our capacity is up to twice as large as that of previous work. Also,
with the adaptability, the proposed hybrid approach is flexible with
a tradeoff between capacity and distortion. Both embedding and
extraction procedures are simple to implement and running effi-
ciently.

Keywords: data hiding, spatial domain, permutation steganogra-
phy.

1. INTRODUCTION

Steganography, the art of hiding one message in another, has been
used over many centuries. Steganography ranges from simple hid-
den messages that can be deciphered by shifting each letter by a
number of positions in the alphabet to watermarks that can be ex-
tracted from an image by a specific method, and has been applied
widely in many topics related to information security. Steganogra-
phy has even been used recently in 3D data, with similar purposes
to those of 2D data.

In this paper, we propose a hybrid approach for data hiding based
on permutation steganography and the vertex modification in the
spatial domain. The 3D model consists of the vertex set and face
set. The permutation steganography by Tu et al. [1] is applied to
embed message in the vertex and face. Namely, the vertex permu-
tation and the face permutation represent the embedded message.
Then, we modify the position of the vertex in the vertex permuta-
tion within a range inside a predefined voxel to further embed more
bits in each component of the vertex. The axis aligned bounding
volume composed of voxels is built for the cover model. The voxel
is subdivided into a number of units in each dimension as well.
The unit where a vertex is located at inside the voxel indicates the
embedded message bitstream for each dimension. Eventually, one
part of the message is embedded in the first embedding stage, and
another in the second. When extracting the message, either the ex-
traction procedure of permutation steganography [1], or modifying
vertex position can be applied first. Message extracted by the proce-
dure of modifying vertex position is the second part of embedding
message, and, of course, by that of permutation steganography is
the first part.

The permutation steganography is distortionless for the stego
model, but modifying vertex position causes model distortion re-
lated to the number of bits to be embedded in and the scale of

the cover model. Therefore, the capacity of our hybrid approach
is adaptive by trading distortion for capacity. Model distortion is
measured using normalized Hausdorff distance and visual percep-
tion. As experimental results show, our capacity is the highest than
previous work of data hiding. Also, our approach is simple to im-
plement with time complexity O(n).

The rest of this paper is structured as follows. Section 2. surveys
related work. Section 3. describes the proposed method. Experi-
mental results are shown in Section 4.. Finally, we conclude and
point out possible future work in Section 5..

2. RELATED WORK

Steganography for 3D polygonal meshes was pioneered by Ohbuchi
et al. [2], who introduced watermarking on 3D polygonal meshes.
Since then many ideas to steganography have been proposed.
Most methods are to slightly perturb the vertex positions of the
mesh for hiding messages either in spatial domain [3, 4, 5, 6, 7,
8, 9, 2, 10, 11, 12, 13, 14, 15, 16], or in the spectral domain,
[17, 18, 19, 20, 21, 22]. Spatial methods tend to have higher capac-
ity and lower computation costs at the expense of weak robustness.
Spectral methods are more robust but have limited capacity and in-
volve serious computations. They are more appropriate for data
protection applications, such as watermarking, than for data hiding.
Recently, Chao et al. [23] presented a very high-capacity and low-
distortion 3D steganography approach based on a novel multilay-
ered embedding scheme to hide secret messages in the vertices of
3D polygon models. Their approach can hide 21 to 39 bits/vertex.

Some methods, [17, 23, 20, 13], utilize 3D models defined as point
set. Polygonal meshes provide fewer vertices than point set mod-
els, but have face information that can be used as the alternative
medium. Higher vertex numbers allow a model to hide more in-
formation, but require more space and computing power to handle.
Recently several methods,[6, 11], hide messages in the connectivity
of the mesh by rearranging vertices and faces relative to a reference
ordering derived from the mesh geometry. Their techniques are
lossless because the cover and stego models are the same.

Permutation steganography [24, 25, 26, 27] gives optimal capac-
ity for hiding information through reordering of n primitives that
have a known reference ordering. Permutation steganography is
of the optimal capacity, up to O(log(n!)) = O(nlogn) bits,
which is much better than the results of the previous work for
3D polygonal meshes but at the expense of computation time
Ω(n2log2nloglogn). Recently, two proposed methods, Bogom-
jakov et al. [28] and Tu et al. [1], are very simple to implement
and perform efficiently, O(n). Both methods guarantee the mini-
mal capacity, one bit per element less than the theoretical optimum,
and are robust and resistant to any kind of attacks on the polygonal
mesh because the reference ordering is obtained by using the traver-
sal of Edgebreaker mesh compression algorithm [29] based on the
mesh connectivity alone. Obviously, those approaches are lossless.



Figure 1: The framework of hybrid data hiding approach.

3. PROPOSED APPROACH

The framework of our approach is shown in Figure 1. There are
two stages both for message embedding and extraction procedures.
When embedding messages for the cover model, we first apply per-
mutation steganography [1], to hide message, and then modify the
rearranged embedding vertices to hide more message. To extract
message from the stego model, either the extraction procedure of
[1] or modifying vertex position can be first used to extract mes-
sage, and then another follows to extract message left.

3.1 Embedding Message

3.1.1 Embedding by Permutation Steganography

Permutation steganography hides the message in a cover model by
rearranging the order of vertices in the model with respect to a
canonical reference ordering. We apply the method proposed by
Tu et al. [1], which improves the work of Bogomjakov et al. [28],
to hide the message in the first stage of the embedding procedure.

Given a cover model, Mc = (V, F ), where V is the set of vertices
and F is the set of faces, the first edge of the first face in the model
is selected as the initial vertex and edge to obtain two reference
orderings by using Edgebreaker algorithm [29] respectively. Note
that the binary trie [30] search structure is built for the embedding
primitive, in which the internal node branches the search traversal
by the message bitstream and the leaf node keeps the primitive each
indexed in a non-decreasing order from left to right. Figure 2 shows
an example of binary trie with n = 11 embedding primitives at
the leaf node (red) where each is indexed and associated with the
corresponding embedded bitstream shown below the index.

At each step i, a primitive at position p is chosen from the remaining
n − i primitives of the reference ordering and output it as the next
primitive of the permutation. The position p is the index of the
leaf node reached by the binary trie traversal according to the next
k + 1 bits, k = blog2(n − i)c, in the embedding message. The
binary trie is a complete binary tree so the leaf node is either at level
dlog2(n− i)e or dlog2(n− i)e − 1. If the number of leaf nodes at
the highest level, e = ((n− i)− 2k)× 2, is larger than the integer
value of the next k + 1 bits, then the primitive at position p will
be outputted as the next primitive of the permutation. Otherwise,
the primitive at level dlog2(n − i))e − 1 reached by next k bits
in the embedding message will be outputted. Note that the output
primitive is actually removed by replacing it with the last primitive
in the remaining primitive so that the remaining n−i−1 primitives

Figure 2: An example of the binary trie search structure with 11
embedding primitives at the leaf node (red). The index and the
embedded bitstream are shown below the leaf node.

can be still indexed sequentially.

After this first stage of embedding procedure, we have the quasi
stego model Ms∗ = (Vperm, Fperm).

3.1.2 Embedding by Modifying Vertex Position (MVP)

The vertex in the output primitive permutation Vperm can be em-
bedded in more message bitstream by modifying its position.

The axis aligned bounding volume of Ms∗ is determined. Given
kx, ky , and kz bits to be embedded in x, y, and z components of
the vertex respectively, the volume is then subdivided into nx

voxel×
ny
voxel × nz

voxel voxels, where ni
voxel = liBV /(2ki × liv), liBV is

the side length of the bounding volume, and liv is the unit length of
2ki units in the voxel for i = x, y and z. The next ki bits in the
embedding message are embedded in the vertex by modifying the
coordinate of its i component to the unit with the index equal to the
integer value of ki in the component of the belonging voxel for all
i = x, y and z. Figure 3 illustrates the voxelized bounding volume
and the subdivision for a voxel. The embedding procedure of MVP
is summarized in Algorithm 4.

Figure 3: The axis aligned bounding volume of the cover model
is conceptually subdivided into voxels, and the voxel is again sub-
divided into 2ki units for each component x, y, and z. The vertex
v is embedded in kx, ky , and kz bits in x, y, and z components
respectively.

3.2 Message Extraction

There are two stages of message extraction. First, the message ex-
traction procedure of permutation steganography [1] is to extract
the message. In the second stage, we extract the message which
is embedded by MVP. Note that either stage can be used to extract
message first, and then another.



Input: perm[]
Output: output[]
// perm[] is the output primitive permutation from permutation
// steganography.
// pref is the minimal vertex of the bounding volume.
// n is the number of the vertices.
// peek(ki) peeks next ki bits from the embedding message.
for i = 0 to n - 1

v = perm[i]

output[i].x← pref .x + b‖v.x−pref .x‖
2kx×lxv

c × (2kx × lxv )

+INT (peek(kx))× lxv ;

output[i].y ← pref .y + b‖v.y−pref .y‖
2ky×l

y
v
c × (2ky × lyv)

+INT (peek(ky))× lyv ;

output[i].z ← pref .z + b‖v.z−pref .z‖
2kz×lzv

c × (2kz × lzv)

+INT (peek(kz))× lzv;
end

Figure 4: Pseudo code of the embedding procedure of MVP.

3.2.1 Extraction by Permutation Steganography

The message extraction procedure of [1], is applied to extract the
message in the stego model. Given a permutation of n primitives
in the stego model, again the same reference ordering as one from
the cover model is computed. And, we build the binary trie search
structure for the primitives in the reference ordering. At each step i,
we choose the next primitive from the primitive permutation to ex-
tract the message bitstream by finding the position (index) p where
the primitive is located in the remaining n−i primitives of the refer-
ence ordering. If the number of primitive (leaf) nodes in the binary
trie at the highest level, e = ((n − i) − 2k) × 2, at step i is larger
than p, then p represents the extracted k + 1 = blog2(n− i)c+ 1
bits. Otherwise, one of the primitives at level dlog2(n− i)e − 1 is
the candidate for extracting next k bits. In this case, p is updated as
p− e/2 to represent the extracted k bits.

3.2.2 Extraction by Modifying Vertex Position (MVP)

In this stage, we extract the embedded message from the vertices
in the stego model. Actually, for each component x, y, and z, the
index of the unit in the voxel where the vertex is located at is the
integer value of the embedded message. Given the maximal em-
bedding bits, ki, the minimal vertex of the bounding volume of the
cover model, pref , and the unit length, liv , in the voxel, the embed-
ding message mi can be extracted by

mi =
v.i− pref .i− b

‖v.i−pref .i‖
2ki×liv

c × (2ki × liv)

liv
, i = x, y, z.

4. EXPERIMENTAL RESULTS

All experiments were performed with several polygonal models of
different sizes on a PC with an Intel Core 2 1.87GHz processor and
2GB main memory to verify and evaluate our proposed approach.
In all experiments, unless otherwise specified, the decimal precision
for the vertex coordinate of all testing models is about 6 decimal
digits so the unit length liv is set to 1×10−6, and kx = ky = kz = k
bits.

Over 1000 randomly generated embedding messages are used to
measure the average capacity and normalized Hausdorff distance
of the testing models for permutation steganography [1], and MVP
respectively. The statistics of the measured capacity is shown in
Table 1. For permutation steganography, the average capacity of
Bogomjakov et al. [28] is the highest, nearly optimum log2n!, than

that of previous work. The average capacity improved by Tu et
al. [1] is about 0.63 bits/vertex. For spatial domain, Cheng et al.
[6] proposed a multilevel embedding procedure and a 3D model
representation rearrangement procedure to hide 9 bits/vertex. Chao
et al. [23] proposed a novel multilayered embedding scheme that
can hide up to 3nlayers bits/vertex in normalized models, where
nlayers ranges from 7 to 13. The proposed MVP approach can
hide 27 to 48 bits/vertex in 3D models. The capacity of MVP is
much higher than that of Cheng et al. [6] in 3D models, but is
less than that of Chao et al. [23] in normalized 3D models about
10 bits/vertex. However, as you can see, Our hybrid data hiding
approach produces much higher hiding capacity, ≈ 2log2n!, than
all of the previous work.

The visual perception for the cover model and stego models of the
all testing models were shown from Figure 7 to 12 in that subfigures
(b) and (c) show the stego models with different k. Subfigure (b)
shows that the stego model with the maximal k bits embedded by
using MVP has little distortion yet is almost unperceivable visually.
As a model distortion comparison, subfigure (c) shows the stego
model with distortion that can be easily detected when one likes
to trade model distortion for embedding more bits. Subfigures (d),
(e) and (f) show the close-up views of the subfigures right on the
top. Regarding to the visual perception, subfigure (e) is similar to
subfigure (d), but the distortion seen in subfigure (f) is manifest.

The number of bits to be embedded in the vertex at the second stage
of message embedding is adaptive. But the more bits to be em-
bedded in the vertex the more distortion to the stego model. The
normalized Hausdorff distance [31] is commonly used to measure
the model distortion such as Metro [32], M.E.S.H. [33], Cheng et
al. [6], etc. We measure the average normalized Hausdorff distance
(NHD) for all testing models and obtain the reasonable NDH each
for the testing model as shown in Table 1. As experiments show, the
distortion is visually acceptable when the value of NHD is around
1 × 10−4. Figure 5 shows the normalized Hausdorff distance as a
function of embedding k bits in each component of the vertex by
MVP. Note that different model scale presents different sensitivity
of model distortion to the increasing of embedding bits. The Ar-
madillo is a large scale model and is of acceptable distortion when
k is up to 16 resulting totally high capacity 97.71 bpv. Figure 6
illustrates the adaptability using Armadillo model as an example.
Our approach adapts the capacity by the model distortion preferred.

Figure 5: The average normalized Hausdorff distance as a function
of embedding k bits in each component of the vertex by MVP.

Table 2 shows timing statistics in milliseconds of the embedding
and extraction procedures of permutation steganography [1], and
MVP for testing models respectively. The time complexity of MVP



Model Capacity (bpv) [bits] normalized
name #verts #faces Tu et al. [1] MVP k bpv Hausdorff distance
Cow 2,904 5,804 92,918 (32.00) 87,120 (27.00) 9 57.00 5.92× 10−4

Fandisk 6,475 12,946 229,686 (35.47) 233,100 (36.00) 12 71.47 6.79× 10−4

Knots 23,232 46,464 952,798 (41.01) 627,264 (27.00) 9 68.01 5.26× 10−4

Horse 48,485 96,966 2,142,566 (44.19) 872,712 (18.00) 6 62.19 3.87× 10−4

Teeth 116,604 233,204 5,595,303 (47.99) 1,749,060 (15.00) 5 62.99 5.25× 10−4

Armadillo 172,974 345,944 8,597,908 (49.71) 8,302,752 (48.00) 16 97.71 4.42× 10−4

Table 1: The statistics of measured average capacity and normalized Hausdorff distance for testing models. The number in column k means
that the model distortion is still visually unperceivable after k bits are embedded in each component of the vertex, meanwhile the normalized
Hausdorff distance measured is shown in the last column for each model.

Model Timings (msecs)
Embbeding Extraction Totalname #verts #faces Tu et al. [1] MVP Tu et al. [1] MVP

cow 2,904 5,804 6 1 3 �1 10
fandisk 6,475 12,946 13 1 9 1 24
knots 23,232 46,464 56 4 39 2 101
horse 48,485 96,966 124 9 87 5 225
teeth 116,604 233,204 311 27 225 17 580
armadillo 172,974 345,944 481 40 341 24 886

Table 2: Timing statistics for proposed embedding and extraction procedures of MVP and permutation steganography [1], for testing models.

Figure 6: Adaptability illustration for Armadillo model. Given a
preferred NHD, the maximal k bits to be embedded is adaptively
determined.

and permutation steganography [1], are both O(n). Namely, the
proposed hybrid approach is O(n). Note that even for Armadillo
model, the embedding and extraction procedures can be done in one
second.

5. CONCLUSION AND FUTURE WORK

A hybrid data hiding approach has proposed, which combines per-
mutation steganography and MVP. Embedding message by permu-
tation steganography [1], for the vertex and face in the cover model
and then modifying the vertex position by MVP, our method im-
proves the capacity of data hiding on 3D models up to 2log2n!.
Moreover, the capacity is adaptive regarding to the degree of model
distortion making our method flexible. Our method is simple to im-
plement and is efficient, O(n), running in a second for all testing
models.

The distortionless approach with high capacity is one of the key

concerns for data hiding. In the future, it is worth exploring what
optimal number of units in each component of the voxel is to make
the model distortion less. Also, we like to embed more permuta-
tions in the cover model. Namely, the primitive arrangement repre-
sents more primitive permutations, hopefully, slog2n!, s ≥ 2. MVP
is not a robust approach. To improve the robustness, we would try
to find a way for modifying vertex position on the basis of reference
ordering.
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(a). Cover model (b). Stego model with k = 9 (c). Stego model with k = 12

(d). Head close-up of (a) (e). Head close-up of (b) (f). Head close-up of (c)

Figure 7: The visual perception for the cover model (a), Cow, its stego models for different value of k ((b) and (c)), and three close-up views
(bottom) at head regarding to the figure on the top.

(a). Cover model (b). Stego model with k = 12 (c). Stego model with k = 14

(d). Middle close-up of (a) (e). Middle close-up of (b) (f). Middle close-up of (c)

Figure 8: The visual perception for the cover model (a), Fandisk, its stego models for different value of k ((b) and (c)), and three close-up
views (bottom) at middle part regarding to the figure on the top.



(a). Cover model (b). Stego model with k = 9 (c). Stego model with k = 11

(d). Middle close-up of (a) (e). Middle close-up of (b) (f). Middle close-up of (c)

Figure 9: The visual perception for the cover model (a), Knots, its stego models for different value of k ((b) and (c)), and three close-up views
(bottom) at middle part regarding to the figure on the top.

(a). Cover model (b). Stego model with k = 6 (c). Stego model with k = 8

(d). Head close-up of (a) (e). Head close-up of (b) (f). Head close-up of (c)

Figure 10: The visual perception for the cover model (a), Horse, its stego models for different value of k ((b) and (c)), and three close-up
views (bottom) at head regarding to the figure on the top.



(a). Cover model (b). Stego model with k = 5 (c). Stego model with k = 7

(d). Middle close-up of (a) (e). Middle close-up of (b) (f). Middle close-up of (c)

Figure 11: The visual perception for the cover model (a), Teeth, its stego models for different value of k ((b) and (c)), and three close-up
views (bottom) at middle part regarding to the figure on the top.

(a). Cover model (b). Stego model with k = 16 (c). Stego model with k = 18

(d). Chest close-up of (a) (e). Chest close-up of (b) (f). Chest close-up of (c)

Figure 12: The visual perception for the cover model (a), Armadillo, its stego models for different value of k ((b) and (c)), and three close-up
views (bottom) at chest regarding to the figure on the top.


