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Figure 1: Evaluation of the proposed adaptive anti-aliasing scheme in the context of simple packet ray-tracing pipeline. Left 
is no-AA image (exactly one eye/shadow ray per pixel). In the middle additional samples are shown (notice how shadow 
boundary is also detected for additional sampling). Right image is anti-aliased result. By computing additional samples only 
where image-space color gradient is high, we significantly save computations. The resulting quality is identical to the 8X 
super-sampling, with only doubling rendering time in compare to no AA version. 

 
Abstract 
This paper describes simple, practical scheme for adaptive anti-
aliasing, particularly suitable for packet style ray tracing. The 
sampling patterns are organized in a SIMD-friendly fashion. The 
technique explores image–space attributes to compute the 
gradient. Only where value of the gradient is high, additional 
samples are used. The final result is anti-aliasing with 8X super-
sampling quality, for just 2X rendering time increase (on 
average). 

Keywords: Rendering, adaptive anti-aliasing, ray-tracing, 
SIMD, MSAA-patterns.  

1. INTRODUCTION 
Raster displays use a finite number of pixels to display the scene: 
visible artefacts appear where pixels cannot adequately represent 
high-frequency data. 
Rasterization and ray tracing are combating aliasing in a different 
manner. The two most popular ways within the rasterization 
context are super-sampling (SSAA) and multi-sampling anti-
aliasing (MSAA). Super-sampling is brute-force approach 
performed by rendering the scene at a higher resolution and then 
down-sampling to the target resolution. Super-sampling is 

expensive in terms of both performance and memory bandwidth. 
Today’s GPUs use MSAA is an approximation to super-sampling, 
avoiding unnecessary shader invocations, and CSAA [1] further 
improves speed by decoupling coverage samples from color/z/etc 
samples. Hardware CSAA/MSAA modes are characterized by the 
pattern of the sampling grid, refer to the nice overview [2]. 
At the same time, both MSAA and CSAA are still brute-force 
methods. Performing equally for the whole render target, they 
lack adaptivity. The power is wasted on smooth areas, whereas 
some problematic pieces of the image might still lack the samples. 
For relatively low frequency effects an interesting alternative to 
HW AA is mixed resolution rendering [3] which is more adaptive.  
Finally, rasterization antialising considers quality of edges 
primarily. For geometry aliasing (e.g. aliasing of 
shadows/reflections) the existing GPU algorithms rely either on 
filtering or increasing overall resolution, for shadow or 
environment maps respectively. In contrast, for RT the true 
shadow/reflection rays can be traced to get the additional data at 
any specific frequency. 
At the same time direct super-sampling methods are too expensive 
for real-time ray tracing. Also computing pixel coverage that is 
required for MSAA/CSAA would essentially mean shooting 
additional rays anyway, thus falling back to super-sampling. 



The iterative nature of ray tracing allows for adaptive schemas, 
when additional rays are spawned only where it is necessary, so 
high-quality results are obtained without significantly increasing 
the storage resources and rendering time. 
The major question for any adaptive scheme is the way how 
troublesome pixels that would need additional samples are 
identified. A recent scheme in [6] uses edge-detection filter that 
again works well for edge smoothing, but doesn’t consider 
geometry aliasing. 
For RT there is an option to find discontinuities on the per-packet 
basis, but smoother results are obtained, when some global (e.g. 
frame-wide) information is used. In the paper we focused on 
simple three-pass scheme. Initial pass is sparse stratified 
sampling, sharing as many samples as possible with adjacent 
pixels. Second pass is discontinuity detection. In the final pass 
additional samples (i.e. rays) are traced. 
Researchers proposed algorithms for tracing coherent ray packets 
instead of single rays ([8]) using SIMD instructions. Thus a 
sample pattern should also be packet-friendly. The paper 
describes efficient grouping of the pattern rays for SIMD-aware 
ray tracing algorithms. We consider the 4-way SIMD (e.g. SSE) 
primarily. 
We argue that to stay real-time one would need to consider inter-
pixel pattern design. We introduce 2x2 pixels pattern. At the same 
time the proposed primary pattern still allows for sub-pixel 
accuracy. 

2. RELATED WORK 
Whitted was first to suggest adaptive super-sampling with 
recursively subdividing the pixels [9] for ray tracing. Mitchell 
presented effective non-uniform sampling patterns and applied 
contrast measure thresholds [10]. Painter and Sloan [11]] 
presented hierarchical adaptive stochastic sampling for ray tracing 
that worked in progressive manner.  
Cone tracing [12] is an example of the instant ray-filtering 
approach that overcomes the aliasing problems resulting from the 
point sampling approach of ray tracing. The space is probed with 
a finite-width cone instead of a ray. The intent is to prefilter by 
computing the integral of the image function within a circle on the 
image plane. Similar goals were pursued by different researchers 
through the introduction of polygonal beams [13] and finally 
frustum tracing with MLRTA [14]. MLRTA provides a natural 
measure of the geometric complexity (i.e. aliasing probability) of 
specific image regions. But no applications of the MLRTA for the 
anti-aliasing are described by the best of our knowledge, 
particularly for shadows/reflections, that are less advantageous for 
frustum tracing. 
Also, the geometry complexity is not the only mechanism that 
contributes to unwanted high frequencies in ray-traced image: 
shadow edges, specular highlights, mapped textures, reflected and 
refracted details, etc. The only contribution that can be pre-filtered 
in advance is the texture aliasing (combined with ray differentials 
[15]). The rest require increasing the sampling rate.  
We follow the previous adaptive sampling techniques in the 
approach of detecting problematic regions via frame-buffer color 
comparisons. This in fact, the very property that leads to the most 
general discontinuity detection, while also efficiently accounting  
for the aliasing mechanisms altogether. The only exception is 
texture anti-aliasing that is done locally on a surface [15], rather 
than in the image plane. 
There are recent approaches [6] where geometry attributes (like 
normal) and shadow existence contribute separately to the multi-
valued threshold vector. While this approach produces better 
quality it does increase the resource and computational pressure. 

Also it can be too conservative (and expensive) for areas where 
some additional attributes might appear aliased thus causing 
additional sampling, that would be avoided if final shading and 
blending were performed first.  

There are plenty of sampling patterns [2]. However most of 
them are concerned with intra-pixel sampling strategies. It does 
make sense for distribution ray tracing [4]. We consider inter-
pixel design by sharing samples within 2 x 2 block of pixels. 
Since more sparse sampling may under-utilizes SIMD units, due 
to lowered rays coherency, we pack the pattern rays in 3 coherent 
groups. 

3. SOLUTION 
Adaptive super-sampling is a smart way of refining the 

rendering of the scene at those exact places where it will deliver 
the greatest benefit. In the paper we focused on simple three-pass 
scheme, Figure 2, left. We consider each pass in details below, 
leaving the analysis for the next section. 

Initial pass is sparse pre-sampling, sharing as many samples as 
possible with adjacent pixels (Figure 2 right). We use FLIPTRI 
pattern [5] for inexpensive sampling during initial pass. FLIPTRI 
costs only 1.25 samples per pixel on average. It is also exhibits 
reasonable stratification for horizontal, vertical and diagonal 
strata. FLIPTRI is the most efficient filter, in terms of quality/cost 
for most cases [2]. 
We also tried scheme based on FLIPQUAD as a primary 
sampling pattern, refer to analysis in section 4. Both FLIPTRI and 
FLIPQUAD are determined for one pixel first, and the rest of the 
sets are then obtained by mirroring along the axis of translation. 
This implicitly results in interleaved sampling [16]: 

A 
Figure 2: Simple three-pass scheme for adaptive anti-aliasing, 
left. An example how primary and secondary pattern rays are 
shared for a 2x2 pixel block. Single FLIPTRI pattern is marked 
with read, right. 

 
To utilize available CPU’s SIMD units completely for primary 
pattern, we group initial samples in SSE packets: 2 edge packets 
and one corner package. These three packets are efficiently shared 
for the 2x2 pixel block, Figure 3. Similarly are shared the samples 
within four (3 edge/1 corner) packets of FLIPQUAD. 



 
Figure 3: Packet-grouping of the rays within FLIPTRI-based 

primary pattern. Two edge packets are shared within 2x2 block of 
pixels, e.g. (edge) packets 1 with 2, or packets 3 with 4. The 
corner (black dots) packet is also shared, but within another

 

 2x2 
block. This irregularity breaks up symmetry somewhat, which 
increases the quality. 

Second pass is discontinuity detection. It involves computation 
of gradients, performed pair-wise between samples in a primary 
pattern, Figure 4. The gradients can be computed either for 
luminance (i.e. brightness) value or separately per-color 
component. Finally the average gradient magnitude is computed 
for the frame. This value serves as a threshold in the final pass, 
where additional samples (i.e. rays) are generated. If super-
sampling threshold value from the previous frame is used, then 
storing all pre-sampling results for finding average gradient can 
be avoided. Then, no dedicated pass is required, instead, the 
decision to super-sample or not can be immediately applied, once 
the values of initial sampling pattern are determined. This way the 
original three-pass scheme (Figure 2, left) can be boiled down to a 
single pass, while average gradient estimation (for the next frame) 
can be coupled with  post-processing routine like tone-mapping. 
This approach improves cache utilization, resulting in overall 
performance improvements of ~5%. 

   
Figure 4: Gradient evaluation is performed pair-wise for 

samples of the primary pattern. Three gradients are computed for 
FLIPTRI (left), and six for FLIPQUAD (right). 

 
For additional samples for FLIPTRI scheme we use 

conventional instantiation of N-rooks sampling [17], known as 
rotated grid super-sampling (RGSS), refer to Figure 2, right. The 

final color value for pixel is computed via simple averaging with 
equal weights for all samples (e.g. box-filter).  
 
4. Results and analysis 
Below is a performance for the scenes with the anti-aliasing 
approach described in the previous section: 
Fairy (178K triangles) 
1 point light, 
no reflections

 
16 fps 

Conference(282K tris) 
1 point light, 
1 reflection bounce 

 
12 fps 

scene 
lights 
refl. 

16 fps 12 fps 

no 
AA 

 
8 fps 7 fps 

FLIP 
TRI 

Table 1: Performance/quality results for the proposed adaptive 
anti-aliasing scheme vs conventional no-AA rendering. FLIPTRI 
is used for primary pattern. Models are ray traced at 1024x1024 
on a Intel ®Core™ i7 @3.33 GHz machine with 4 Gb RAM. For 
the Fairy scene close-up the material colors are turned off to better 
demonstrate the effect. 

 
The baseline time to frame is only 1.25X of the no-AA version 
(due to inexpensive primary pattern). The rest is contributed by 
additional sampling that costs from 20% to 30% of the frame 
time, depending on the scene. The final result is anti-aliasing with 
8X super-sampling quality, for just 2X rendering time (on 
average). 
The FLIPQUAD primary pattern is more expensive while 
produces better quality, refer to Figure 5. In compare to other 
sampling patterns costing 2 samples per pixel (e.g. Quincunx), it’s 
behaviour is clearly preferable [2], [18]. It is also able to find and 
fix more discontinuities than FLIPTRI. Coupled with more 
additional samples, the FLIPQUAD might be recommended as a 
good higher-quality preset: 
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Figure 5: Quality comparison for 2 anti-aliasing presets: 

FLIPQUAD with 16 additional per-pixel samples (upper image) 
and FLIPTRI with 4 samples shared for 2x2 pixels block (lower 
image). The performance difference is not very high (just 2X) due 
to better ray coherence of the FLIPQUAD-based preset. 

 
Note on texture anti-aliasing. For scenes with textures exhibiting 
large variations, discontinuity detection in the image space might 
generate unnecessary sampling. Since texture anti-aliasing is 
performed locally on a surface, it makes sense to estimate 
gradients (section 3) separately from textures, in spirit of [7]. 
However we found that using local average texture intensity for 
gradient estimation works fine, while avoiding many false 
positives, see Figure 6. 

  
Figure 6: When the texture exhibits high variation, only its 

local average value is considered for gradient estimation. This 
helps to avoid unnecessary super-sampling. Still other sources of 
aliasing are detected correctly (e.g. reflection boundaries: at the 
right). 

5. FUTURE WORK 
We consider using MLRTA as a topic for future research. This 

would allow quickly skipping areas that don’t exhibit geometry 
aliasing.  While this is obvious for primary rays, the research is 
required for secondary rays. 
Currently we use box-shaped reconstruction filter and equal 
weights for all samples.  Increasing the size of the reconstruction 
filter from 1×1 to 2×2 (or 3x3, which is advantageously 
symmetric) pixels enables the sampling pattern to more accurately 
approximate a wider reference filter [17]. This neither increase 
resource consumption, nor complexity of the filtering algorithm. 
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