
Biased global illumination via Irradiance Caching and Adaptive Path
Tracing on GPUs

Vladimir Frolov
(1,2)

, Alexander Kharlamov
(1,2)

 and Alexey Ignatenko
(1)

(1)The department of Computational mathematics and cybernetics, Lomonosov Moscow State University, Moscow, Russia.

{vfrolov, ignatenko}@graphics.cs.msu.ru

(2) NVIDIA, akharlamov@nvidia.com

Figure 1. The presented hybrid approach uses irradiance caching to approximate smooth indirect lighting and path tracing for

fuzzy effects such as soft shadows or glossy reflections. All screenshots where rendered at 1920x1200 resolution on a GTX 260

under 3 minutes.

1. ABSTRACT

This work presents an approach for biased photorealistic

rendering on GPUs. The key idea is to combine irradiance caching

with coherent adaptive path-tracing to maximize performance of
the SIMD style execution.

Key words: Global illumination, photorealistic rendering, GPU

computing.

2. INTRODUCTION

For the last decade Graphics Processor Units (GPUs) have made a

great advance and became fully programmable processors. Since

pixel shader 2.0 appeared, ray-tracing community has seen several

successful implementations that used GPUs to perform ray-

tracing. With the introduction of CUDA programming model this

area of research experiences further growth. As more APIs are

becoming available one can expect to see an increasing interest in

this area. We have started our research at the point when CUDA C

was the only option, however since programming model is shared

between CUDA C / OpenCL and DirectX Compute APIs, we can

generalize our results, and make some HW independent
conclusions.

Several unbiased GPU photorealistic renderers are available now

(IRay, Octane, Arion). However, we find that unbiased solutions

have two significant drawbacks. Unbiased approaches usually

perform computations in a brute-force manner. This means, that

algorithmic complexity is higher, and in practice, unbiased

approaches may use up to an order of magnitude more rays than

alternative algorithms (such as irradiance cache). The second

problem comes from a highly irregular nature of ray-tracing itself.

Although each ray can be processed in parallel, the workload and

data access pattern per each ray can be very different. This can

lead to inefficient resource utilization. Although algorithmically

more efficient biased approaches are more difficult to implement

on GPU because of their complex nature and unbalanced work

distribution. Our paper presents the research that we have

performed on GPU efficiency for ray-tracing. We present a global

illumination pipeline that uses irradiance cache with path tracing

to quickly compute smooth indirect illumination, and soft

shadows / glossy reflections.

3. RELATED WORK

3.1 GPU ray-tracing

Purcell et al. in [1] proposed to implement ray tracing pipeline in

a set of fragment programs. Uniform grid has been used as an

acceleration data structure due to simplicity. Data streaming was

arranged so that a ray was generated within one kernel (this was

implemented using a fragment program executed over a full

screen quad), second kernel would perform grid traversal. If the

ray hits a voxel with triangles, it is passed to a ray-triangle

intersection kernel. If the intersection is not found, it is passed

back to the grid traversal kernel. To manage the state of a ray

(traversal, intersection, and shading) stencil test was set up

respectively. The simplicity of this approach is appealing even

today. It allows easier debugging, along with a more focused

performance bottleneck analysis.

 Foley et al. in [2] suggest two alternative approaches ray tracing

kd trees. Since GPUs don‟t natively support stack, the authors
suggest implementing one of the following techniques:

1) Modify kd tree nodes to support a reference to the parent

node. This reference is used whenever a ray needs to

backtrack to the parent node and to process a different sub-

tree.

2) Traverse a kd tree until a non empty leaf is found. However

if a ray doesn‟t intersect any triangles within this leaf, ray‟s

origin is modified to skip the same leaf. The kd tree traversal

is restarted and the whole process is repeated until

intersection is found or the ray exits the scene.

Horn et al. in [3] suggest a modification of the restart algorithm.

The idea is to keep a short stack in registers and resorting to

restarts in fewer cases.

For bounding volume hierarchies Thrane et al. in [4] have shown

the stackless traversal for efficient GPU implementations. Each

leaf stores an escape index to the corresponding node as shown in
Figure 2.

Figure 2 BVH structure for stackless traversal.

3.2 GPU Global Illumination

Wang in [5] presents an efficient approach for the global

illumination using photon mapping on GPU. The key aspect of

this work is to use irradiance cache with photon mapping and final

gathering to quickly compute smooth indirect illumination. Direct

lighting is computed using simple ray tracing and supports hard

shadows from point light sources.

In [5] irradiance cache points positions were determined from the

geometry discontinuities. Quad tree was used for adaptive

subdivision to determine irradiance cache points positions. To

evaluate the discontinuities, geometry metrics (screen space

discontinuity in normals or positions) have been introduced. If the

Quad tree corner point's difference exceeds certain threshold, then

the subdivision of this node is required, otherwise no further

subdivision is required. The similar approach was used in [6], but

without final gathering. Direct illumination was computed with

ray tracing and indirect - with photon mapping. This algorithm

works well for caustics but produces noisy results for indirect
lighting.

In [7] photon mapping was used to compute the full light

equation. The drawback of this approach is strong low-frequency

noise and dark edges. The low-frequency noise is a general

problem of photon mapping. It can be removed with a final

gathering step or filtering in object space. Dark edges appear on

the borders of geometry because light is gathered only from the

half of the disc but the result value divides on the area of the full

disc.

Both filtering and final gathering introduce additional bias. Also

we consider that final gathering has difficulties when two surfaces

lie close to each other and there is a lack of photons in the scene.

To eliminate the coming artifacts, the more complex and slow

secondary final gathering should be used (as described in [8]).

So, approaches from [5] and [6] may be a good choice for an
interactive rendering but not for a photo realistic image synthesis.

McGuire and Luebke used in [9] the combination of the

rasterization for direct lighting and CPU-based photon tracing
with GPU-based photon splatting for indirect illumination.

4. RAY TRACING BOTTLENECK ANALYSIS

A naïve implementation of a ray tracer kernel will most likely

yield poor results. To get the maximum out of any architecture a

deep analysis of underlying HW is required. A good starting point
with a focus on ray-tracing would be [10].

The naïve kernel that traverses spatial subdivision structure, does

ray-primitive intersection and shading, shows the following signs

of illness:

1) High register count.

2) Visual profiler shows 90% bottleneck in “instruction” unit.

3) Extreme amounts of local memory spilling

4) Divergent branching counter spikes.

These four issues in fact are tightly interleaved. They are causing

a shifting bottleneck from instruction throughput to being memory

bound.

1) Register count directly affects HW occupancy. Occupancy is

the ratio between threads running on hardware to maximum

possible threads amount. Occupancy can serve as a

performance metric as well as a bottleneck indicator.

2) HW resources such as registers or shared memory are

limited. Since all threads run in parallel, HW scheduler has to

make sure there are enough resources for the launched

threads.

3) Register count indicates the amount of registers that compiler

allocates per thread.

4) Given an X registers per streaming multiprocessor and Y

registers allocated by the compiler, the total amount of

threads that can coexist on the streaming multiprocessor is X

/ Y. In particular NVIDIA Tesla 10 architecture has 16 *

1024 32bit registers per Streaming Multiprocessor. Thus a

register count of 32 will leave room for no more than 512

threads.

With high register count exploding it is expected to observe poor

HW utilization but this is not the final problem. GPUs rely on

large scale threads parallelism to cover memory access latency.

Poor occupancy can turn around and become a memory

bottleneck.

Compiler will try and lower the register count by pushing and

popping data into local memory. However local memory has the

same latency as global memory. Analyzing CUDA PTX code one

would local store and local load instructions happening repeatedly

within a loop. This increases bandwidth pressure, and in addition

to poor latency hiding can make application memory bound.

And finally divergent branching spikes are a sign of... divergent

branches. When a block of threads executes it can diverge in two
ways:

1) Different warps follow different code paths. This is perfectly

fine, because it means no additional overhead except for

condition evaluation.

2) Different threads within a warp follow different code paths.

This for example can happen as soon as a single ray from a

warp finds a non empty leaf and starts ray-triangle

intersection. In this case HW will generate additional warp

that will execute the code path. Partly threads will be masked

out. The warps will be merged together as soon as the code

paths merge back together.

4.1 Proposed ray tracing pipeline

Removing the bottlenecks can be tricky so we decided to

implement a simple divide and conquer strategy. We split the ray
tracing pipeline into the following stages (as shown in Figure 3):

1) Ray generation kernel. This can be a kernel that generates

eye rays or secondary rays. Rays are packed into a linear list;

direction and origin are stored in a structure of arrays
fashion.

2) Tree traversal kernel. At this stage all rays are traced

through a kd tree using stack in local memory. The idea is

that the tree depth is usually defined beforehand during tree

construction. This allows us to conservatively estimate stack

size to be no more than tree depth. That stack stores an index

and tfar for kd tree. The output of this kernel is a list of non-

empty leafs indices. This list serves as input to the next stage.

To avoid constant switches between kernels and extra

overhead, we traverse the tree until a number of suitable leafs

is found. They are all written to a pre-allocated buffer. The

stack in local memory is lost after traversal kernel completes,

so in case we can‟t afford to allocate enough memory to keep

enough leaf nodes in it, we can resume tree traversal using

“restart” logic.

3) Ray-primitive intersection kernel accepts a list of rays as

input along with a list of leaf candidates per each ray. If

intersection was not found within leaf boundaries, then it

sends the modified ray back to tree traversal stage. If the

intersection point was found, then the ray is passed along.

4) Shadow kernel generates shadow rays and checks light

visibility.

5) At shading stage we compute direct illumination with

shadows.

6) The goal of the material kernel is to generate secondary rays.

Typically it would generate reflection and refraction rays.

These rays are sent to traversal stage.

7) Store result stage performs final light equation integration.

Figure 3 Ray tracing pipeline

This separation provides the following advantages:

1) Complete register usage comprehension. While kd tree

traversal can fit into 16 registers and achieve perfect

occupancy, ray-primitive intersection consumes 32 registers

per thread. On Tesla 10 architecture we can‟t do better than

with ½ occupancy. Shading turned out to be the most register

hungry kernel due to the shading model peculiarities.

2) By reducing register pressure we have removed a significant

portion of local stores and loads.

3) We have removed a significant portion of divergent threads.

In fact since traversal / intersection and shading are all

different kernels, the only divergence on a warp level is due

to different time spent within the kernel loops.

There is still one remaining problem: varying workload per

thread. Now, since we have different kernels, they serialize and

intersection will not start until traversal is fully complete. This

may well turn into waiting for a single thread that has the longest

route through the tree. To reduce that further we implement a

technique called persistent threads: each thread processes several

rays instead of one. We divide the screen into blocks as shown in

Figure 4 yet we launch a number of thread blocks that GPU can

process in parallel. In this case each thread block has a fixed

number of blocks to process. This is similar to ray pool described

by Aila in [10], however the number of rays per each thread is

fixed and we avoid using atomics.

Figure 4. Screen divided into blocks. Blocks of the same color

are processed by the same thread block

Finally, after achieving a good performance of 50 Ms rays/sec on

average we have combined the existing traversal – intersection
kernels back, leaving just the shading outside.

We can now pass leaf nodes between two stages through a short

list in shared memory. Each thread has a few private leaf IDs

stored in shared memory (it‟s indexable and essentially free to use

instead of registers).

Combining traversal and intersection into an uber-kernel with

simple persistent threads management provides us with additional

benefit of lesser kernel launch overhead, easier thread

management. The uber-kernel is in general slightly (5-10%) faster

than its separated analogue, and doesn‟t have any memory

overhead. However both solutions are just variations of the same
software load-balancing idea.

5. SUGGESTED APPROACH

For the fast global illumination solution a combination of

distributed ray tracing and irradiance caching is commonly used.

We suggest a similar idea: for fast and smooth indirect lighting we

use irradiance caching technique as described in [11] and we use

path tracing for other effects, such as soft shadows, glossy

reflections and refractions, depth of field and motion blur [8]. The

main motivation behind this step is to use simple iterative

algorithm and avoid complex recursive nature of distributed ray

tracing. On the other hand due to highly divergent nature of path

tracing we avoid using it for full light equation evaluation and
consider it only for special effects.

However, this also increases the problem with the work

distribution. The black circles in Figure 5 show simple regions

that require several iterations for light integration to converge.

The red squares show complex regions with soft shadows and

reflections. While 10-20 iterations are enough for most pixels to

converge to light equation solution, some areas of pixels require

100-1000 iterations to eliminate noise. This problem is solved on

the CPU by processing each pixel until sufficient quality is

achieved. On the GPU, however, this presents a challenge due to
of the unpredictable workload.

Figure 5. Teapot inside the Cornell box, direct lighting only.

5.1 Adaptive path tracing

For adaptive path tracing we split our screen into tiles as shown in

Figure 6. Within the tiles we use Z-curve indexing for all „per-ray‟

data (ray position, direction, and intersection info etc). This

removes large address gaps for all pixels within a tile and enables

an important bandwidth-saving optimization on NVIDIA

hardware (coalesced memory reads and writes).

We define TMAX to be a number of tiles that we can process in

parallel. TMAX depends on the amount of memory that we are

prepared to allocate.

Figure 6. Z-Curve used to indexing pixels inside the tile.

We mark all tiles as active in the beginning of the rendering and

add all tiles to the “active-tiles” list. In the example pseudo code

below we assume tile size is 16x16:

var rays_per_pixel : integer;

procedure Adaptive_Path_Tracing is

 active_list: list of Tile;

 active_array: array (0..TMAX-1) of Tile;

 sz,i: inreger range 0..TMAX;

 tile : Tile;

begin

 subdivide screen to tiles;

 add all tiles to the active_list;

 rays_per_pixel := 1;

 while not active_list.empty():

 sz := min(active_list.size(), TMAX);

 active_array[0..sz] := active_list[0..sz];

 Process_Tiles_On_GPU(active_array, \

 sz, rays_per_pixel);

 for i in 0..TMAX-1:

 tile := active_array[i];

 if not tile.finished():

 active_list.push_back(tile);

 end for

 if active_list.size() < TMAX * 0.5:

 rays_per_pixel *= 2;

 end while;

end Adaptive_Path_Tracing;

During the rendering process, some tiles finish earlier than the

other. They are discarded from active_array and from

active_list and replaced by new tiles from active_list

if the last is not empty. When the number of active tiles is less

than , we double the number of rays per pixel.

procedure Process_Tiles_On_GPU (

 active_array array (0..TMAX-1) of Tile,

 sz : Integer,

 rays_per_pixel : Integer

) is

 tile_size : Integer;

 rays_num : Integer range 0..TMAX-1;

begin

 tile_size := 16*16;

 rays_num := tile_size*rays_per_pixel*sz;

 assert (rays_num <= TMAX);

 on the GPU:

 generate initial rays from the eye \

 according to the rays_per_pixel;

 trace exactly rays_num rays (paths in fact);

 sample result according to the rays_per_pixel;

end Process_Tiles_On_GPU;

For large resolutions, like 1920x1200 our approach allows a good

balance between memory consumption, performance and GPU

workload.

Each tile is represented by a Tile structure. This structure is

passed back and forth between CPU and GPU after each iteration.

type Tile is record

 index : integer;

 max_diff : float;

 counter : integer;

end record;

The „index‟ field is an offset to a group of 256 rays in a GPU

memory. It is used when fetching rays and sampling the resulting
color.

To evaluate when a tile has converged we use the following

approach: each ray accumulates partial sum of lighting integral

into sumodd and sumeven for all odd and all even passes of the

path tracing (normalized e.g. divided by total ray count). After

each iteration we compute max_diff value – it represents the

maximum difference (among all rays in a tile) between these
partial sums as shown in pseudo code below:

for i from 0 to 255 do:

 diff(i) := ||summodd - summeven||c

max_diff := max of all diff(i);

Since we are using quasi Monte Carlo integration, we expect that

integral should converge at some point. Though, there is no good

estimate for the number of iterations, however, sumodd and

sumeven should converge to the same value sum. This leads us to

the conclusion that as soon as – where

 is a certain threshold that represents error, than we can stop our

integration process for this pixel. When the max_diff < we can

stop integration process for all pixels in the tile and discard that

tile from the active_list.

Finally counter represents the number of passes that have been

completed already.

5.2 Irradiance cache

Our irradiance cache implementation is very similar to the Wang's

implementation in [5]. For each pixel we compute a surface

position and normal. We do that on the GPU. Next, we construct a

quad tree in screen space as in [5]. We used an initial size of 32

pixels both in horizontal and vertical directions. Each 32x32 quad

is subdivided with a quad tree and geometry discontinuity is

computed between quad tree nodes. When the discontinuity is less

than a threshold, we do not perform further quad tree subdivision.

The chosen pixels correspond to the irradiance cache points in

object space. At each point we generate a set of rays to sample

hemisphere and compute indirect illumination. To have more

coherent groups of rays we subdivide hemisphere into sectors and

generate rays for each sector where . We do that on

CPU in tangent space. On GPU we transform directions from

tangent to object space to get correct hemisphere sampling. Next,

we construct a multiple-reference octree as described in [11].

We implement interpolation algorithm, quality metric and

stackless octree look-up as described in [12]. It seems that

stackless approach should be efficient on GPUs. However we find

that multiple-reference octree is not the best solution.

Figure 7. Multiple reference octree as described in [11].

The key advantage of the multiple reference octree is a stackless

„root-to-leaf‟ look-up algorithm. To find all points in the given

sphere we can traverse tree from the root to a leaf and there is no

need in stack or recursion. But the price for such simplicity is

multiple references: each point can be referenced from multiple

octree nodes. During octree construction or point insertion, we

need to add each irradiance cache point Pi to all octree nodes that

intersect with sphere centered at Pi, with radius equal to the search

radius. The number of references in this approach can be a 5x-10x

times larger than the number of points. On GPU this leads to

dependent texture fetches and cache trashing. In our

implementation octree look-up costs as much as a ray-tracing part.

We suppose that kd-tree Wang‟s approach from [5] will be more

efficient than the multiple-reference octree from [11], this is one

of the future research strategies.

Figure 8. VRay; Core 2 Quad, 6600; 62 sec in 1024x768

Figure 9. VRay; Core 2 Quad; 6600; 153 sec in 1024x768

5.3 Complete solution

We have experimented with separate kernel architecture. Our

motivation not to use uber-kernels in this case was:

1) Uber-kernels are bound by their most heavy part. For

example, if we have a complex shading code, it can affect on

the ray tracing performance and downgrade it;

2) It is possible that several pixels require thousands of rays and

all these rays for each pixel will be traced in series. We

suggest a solution to trace them in parallel with different

threads;

3) Last but not least, for the complex code, like ray-tracing with

different shading techniques and materials, separate kernel

architecture is much more convenient than uber-kernel,
especially for profiling and debugging reasons.

At each bounce of path tracing we compute direct illumination by

tracing shadow rays towards each light and look-up indirect

illumination from the irradiance cache. To reduce octree look-up

cost we trace several shadow rays for each shadow sample. This

solution allows us to do less look-ups on the regions with complex
soft shadows.

Figure 10. Our Implementation; GTX260; 15 sec in 1024x768

Figure 11. Our implementation; GTX260; 31 sec in 1024x768

6. RESULTS

Our ray tracing implementation runs with 30-50M rays per second

on the „Conference Room‟ scene and GTX260 GPU. It

corresponds to the other works related to GPU ray tracing: [10],

[13]. We use a SAH kd tree to accelerate ray-triangle intersection.

We compared our renderer with VRay on the simple scene both

with direct and indirect illumination. Our implementation shows

good performance scaling for large geometry and higher

resolutions (Fig 8-11).

VRay is a commercial renderer and we don‟t know exactly how it

works, so it is hard to make a precise per-pixel image comparison.

On the middle-level hardware our implementation performs up to

4x times faster than VRay. As we did not pursue the aim to make

a per-pixel comparison, Figures 9 and 11 are slightly different but

our original image contains less visible noise.

For the Dragon model irradiance cache construction takes 4

seconds. For the simple scenes, like a teapot in Cornell Box, it
takes less than 0.5 sec.

All our Demos, videos, comparisons and screenshots can be found

at http://ray-tracing.com (English) and http://ray-tracing.ru

(Russian).

http://ray-tracing.com/
http://ray-tracing.ru/

Figure 10.

Figure 11.

Figure 13. 1920x1200. GTX260; 181 sec

Figure 14. 1920x1200. GTX260; 159 sec

Figure 12. 1920x1200. GTX260; 144 sec.

7. LITERATURE

[1] Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. 2005.

Ray tracing on programmable graphics hardware. In ACM

SIGGRAPH 2005 Courses (Los Angeles, California, July 31

- August 04, 2005). J. Fujii, Ed. SIGGRAPH '05. ACM, New

York, NY, 268. DOI=
http://doi.acm.org/10.1145/1198555.1198798

[2] Foley, T. and Sugerman, J. 2005. KD-tree acceleration

structures for a GPU raytracer. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics

Hardware (Los Angeles, California, July 30 - 31, 2005).

HWWS '05. ACM, New York, NY, 15-22. DOI=
http://doi.acm.org/10.1145/1071866.1071869

[3] Horn, D. R., Sugerman, J., Houston, M., and Hanrahan, P.

2007. Interactive k-d tree GPU raytracing. In Proceedings of

the 2007 Symposium on interactive 3D Graphics and Games

(Seattle, Washington, April 30 - May 02, 2007). I3D '07.

ACM, New York, NY, 167-174. DOI=
http://doi.acm.org/10.1145/1230100.1230129

[4] THRANE N., SIMONSEN L. O.: A Comparison of

Acceleration Structures for GPU Assisted Ray Tracing.

Master‟s thesis, University of Aarhus, 2005. 2, 3

[5] Wang R., Zhou K., Pan, M., and Bao, H. 2009. An efficient

GPU-based approach for interactive global illumination.
ACM Trans. Graph. 28, 3 (Jul. 2009), 1-8.

[6] Fabianovski B., Dingliana J. Interactive Global Photon

Mapping. . In Proceedings of the EUROGRAPHICS
conference, 2009. p. 1151-1159.

[7] Frolov V., Ignatenko A. Interactive GPU Ray Tracing and

Photon Mapping. In: GraphiCon'2009.; 2009. p. 255-262. (In

Russian).

[8] Jensen, H. W., Suykens F., Christensen Per H., Kato T. A

Practical Guide to Global Illumination using Photon

Mapping. SIGGRAPH 2002 Course Note #43. ACM, July

2002. (San Antonio, USA, July 21-26).

[9] McGuire, M. and Luebke, D. 2009. Hardware-accelerated

global illumination by image space photon mapping. In

Proceedings of the Conference on High Performance

Graphics 2009 (New Orleans, Louisiana, August 01 - 03,

2009). S. N. Spencer, D. McAllister, M. Pharr, and I.

Wald,Eds. HPG '09. ACM, New York, NY, 77-89. DOI=
http://doi.acm.org/10.1145/1572769.1572783

[10] Aila, T. and Laine, S. 2009. Understanding the efficiency of

ray traversal on GPUs. In Proceedings of the Conference on

High Performance Graphics 2009 (New Orleans, Louisiana,

August 01 - 03, 2009). S. N.

[11] Křivánek, J., Gautron, P., Ward, G., Jensen, H. W.,

Christensen, P. H., and Tabellion, E. 2008. Practical global

illumination with irradiance caching. In ACM SIGGRAPH

2008 Classes (Los Angeles, California, August 11 - 15,

2008). SIGGRAPH '08. ACM, New York, NY, 1-20. DOI=

http://doi.acm.org/10.1145/1401132.1401213

[12] Pharr, M. and Humphreys, G. 2004 Physically Based

Rendering: from Theory to Implementation. Morgan

Kaufmann Publishers Inc.

[13] Garanzha K ., Loop C. Fast Ray Sorting and Breadth-First

Packet Traversal for GPU Ray Tracing. In Proceedings of

the EUROGRAPHICS conference, vol. 29 (2010), Number

2.

8. ABOUT THE AUTHORS

Vladimir Frolov graduated with MS degree from

Computational Mathematics and Cybernetics department of

Lomonosov Moscow State University. Vladimir works at

NVIDIA as an intern. His area of research is photorealistic

rendering, fluid simulation and gpu programming. His

contact email is vfrolov@graphics.cs.msu.ru.

Alexander Kharlamov is a PhD student at Computational

Mathematics and Cybernetics department of Lomonosov

Moscow State University. Alexander works at NVIDIA as

a developer technology engineer. His area of research is

photorealistic rendering, physical simulation and gpu

programming. His contact email is

alharlamov@nvidia.com.

Alexey Ignatenko is a PhD researcher at Computational and

Cybernetics department of Moscow State University. His

contact e-mail is ignatenko@graphics.cs.msu.ru.

http://doi.acm.org/10.1145/1198555.1198798
http://doi.acm.org/10.1145/1071866.1071869
http://doi.acm.org/10.1145/1230100.1230129
http://doi.acm.org/10.1145/1572769.1572783
http://doi.acm.org/10.1145/1401132.1401213
mailto:vfrolov@graphics.cs.msu.ru
mailto:alharlamov@nvidia.com
mailto:ignatenko@graphics.cs.msu.ru

