

Real-time Animation, Collision and Rendering of Grassland

Sergey Belyaev, Igor Laevsky, Vyacheslav Chukanov

Department of Applied Mathematics

St.Petersburg State Polytechnic University, St.Petersburg , Russia

bel@d-inter.ru

Abstract

It is proposed an integrated solution for animation, interaction

with dynamic objects and visualization of large grasslands. We

use instancing for real-time visualization. For that, a new method

for physics animation was developed which does not require
saving generalized velocities and moves for each grass blade.

Keywords: Real-time, Animation, Collision, Rendering, Grass.

1. PREVIOUS WORKS

There are three methods for the grass visualization: geometry-

based, image-based и volume-based. According to the first

method, each grass blade is defined with a set of triangles. The set

of the blades shapes a rectangle block. The block is visualized

repeatedly in order to cover all the grass area. To speed up

visualization, instancing technique is used. This geometry-based

method was used in [3], [8] and [10] papers. The problem of this

method is visualization of hundreds of millions of triangles. For

cutting down this number, it was proposed in [3] to reduce the

number of triangles in the blade if the latter is far from camera.

Image-based method distinguishes from the described above with

only one feature: the set of blades in the block is replaced with the

set of billboards with the texture containing alpha channel; a set of

blades is drawn on it. This method was used in [2], [5], [6] and [9]

papers. Volume-based method was applied in [7, 8]. Based on

these approaches, it is difficult to get high quality of visualization
close to the camera.

In order to increase visual realism, all mentioned methods are

accompanied by the grass animation. In all cases it is used

simplified model: the movements are proportional to the wind

force and directed along its velocity vector.

Grass interaction with dynamic objects during the animation

process was considered in [12] and [6]. In the first of these papers

real interaction was substituted with use of a special texture – the

footprint of the moving object. In the second one the object
interacted with billboards that simulated the grass.

2. VISUALIZATION

2.1. Basic principles

We use geometry-based approach. According to it, similar to [8]

rectangular blocks are created; each of them consists of a set of

separate blades. These blocks are visualized on the terrain surface.

A set of grass blocks makes up the rectangular grid which is

mapped onto terrain such way that the central cell of the grid

appears just under camera. When the camera moves on the
adjacent grid cell the whole grid moves on the grid cell size.

The grass covering is visualized by multiple repetition of the

single grass block according to instancing method with correcting

position and shape of each grass blade in compliance with the

terrain height and wind force in the given point.

Some part of the grass blocks is not included in instancing. These

are the blocks in which interaction of grass blades with other

dynamic objects is possible, as well as such interaction has

occurred. For these blocks wind simulation calculations use

numerical methods that require storing current positions and

velocities of the grass blade tops, which excludes instancing. Let

us denote these blocks “patches”. They are visualized as objects

containing a set of grass blades.

The grass block is a square containing N=n*n blades. In terms of

DirectX10 each blade is a point containing four vertices and the

normal determining rotation angle of the blade plane and the angle

to the terrain surface, as well as geometry (length and height) and

physics (mass and rigidity) characteristics. This data and the wind

force vector are input data for the vertex shader to calculate the

current location of the vertices and values of normals in them.

Then, the geometry shader builds a cubic spline, that determines

the blade triangles, number of which depends on the distance
between the blade and the camera.

2.2. Levels of detail and smooth transition
between them

We introduce three discrete levels of detail for the grass blocks, as

well as possibility of smooth changing of detail within a level. To

provide the possibility of smooth changing of detail, a weight

coefficient is assigned to each blade in the block. When

visualizing, the blade is discarded, if the following condition is
valid:

),(zFw 

where w – weight coefficient, F – some function, z – the distance

from the camera to the blade,  - the angle between direction to

the camera and normal to the terrain surface in the blade point.

To define F function, note that the number of grass blades on a

square unit must be proportional to the visible size of this square

on the screen, i.e. proportional to (n,r) scalar product (where n –

normal to the terrain surface and r – direction to the camera) and
inverse proportional to the camera distance d:

2
321

)(

dadaa 

rn,

In the denominator we take a square trinomial instead of camera

distance d in order to avoid big numbers when camera comes near
to the blade.

In addition we take into account that on contour areas where (n,r)

scalar product value is close to zero, the grass density should be

high. To do that, instead of the scalar product we use the

following expression:

tt ))(1(rn,

where


|))(|1(rn,t

Here α- a big number (we take it 8).

Finally, F function looks as


















 1,0,

2
321

))(1(
1),(

dadaa

tt
clampzF

rn,


This function is used both for discarding grass blades and for

selecting the block’s discrete level of detail. In the first case d is

the distance from the camera to the grass blade, in the second – to
the block center.

2.3. Lighting calculation

For a single directional light source applied to a point of the
surface of a blade, the radiance I is:

))0;*max()0;*(max(LNLN  CdIdKaIaKI

Where aK is the material ambient color, dK - the diffuse

reflectance factor of the blade material, aI - the intensity of the

ambient light, N - the normal to the grass blade surface, L - the

light direction, C – the factor to account for the color change of

light traversing the grass blade fibers, dI - the intensity of the

light source.

Because the grass blades shade each other, intensities of diffused

and direct sun light should be considered as functions of distances

between the blade base and top. We use the following
dependences:

)***
(

**
aIaIlaIaI 

6*

ldIdI 

where
*
aI ,

*
dI - intensities on the blade top,

**
aI - intensity on

the base, l – normalized distance from the base to the top.

For Frenel effect simulation while calculating light for the blades

on contour terrain areas we increase the calculated intensity value

I by sI value:

10
)(

6
V*NLlsKsI 

where sK is the specular reflectance factor of the grass blade

material, LN - normal to the terrain surface and V - vector of

direction to the camera.

3. ANIMATION

3.1. Inertial animation model

Let us represent the blade model with the chain of n linear

segments, connected each to other with joints in which there are

spherical springs (Fig. 1). We will denote the rigidity of these

springs as ik where i – number of the joint.

Fig. 1. The blade model for n = 4

The coordinate system is assigned to each segment as shown on

Fig. 1. The segments and joints are enumerated bottom-up. Zero

segment is dummy and determines initial rotation and tilt angles

of the blade when planting. Ground level is on the height of lower
end of the first segment (joint 1).

Let the following external forces
e

fi are applied to the segment

centers – the forces, which are the sum of the wind force and the
segment gravity (Fig. 2).

Fig. 2 Forces and moments applied to the segment

Let us write movement equation for i-segment in its coordinate
system:

Here:J– inertia tensor, iω - vector of angle velocity of i-segment,

iψ – vector determining rotation increment of the coordinate

system of i-segment, relatively to the coordinate system of (i – 1)

segment , ig - the moment because of spring in i-joint, iR –

matrix converting vectors from the coordinate system of i-

segment to the coordinate system of (i-1)-segment (when i=0 – to

the world coordinate system), iT - matrix, converting vectors

from the world coordinate system to the coordinate system of i-

segment, ia - acceleration at the end of i-segment, l= (0,0,l)’,

where l – a half of the segment length, m – mass of the segment.

For integration of the system we can be used Featherstone

algorithm [11]. However, the computational complexity of this

integration is too expensive to calculate the animation of several
thousand blades of grass in real time.

We can simplify this system, if assume that: angle velocities are

small and impact of higher segments on lower is much less, than

reverse. The first assumption allows us to discard members

containing squares of angular velocities, and the second – to

11

1

*
1

)(

1111

1































iiiiii

iiimi

i

iii

iiii

iiiiiii

iimiii

i

fRefT*ff

)
*

aaR(
*

f

ωψ

aaa

lωωlω
*

a

)efTf(2RlgRg

aRl)(JωωωJ







refuse of the second pass in Featherstone algorithm. As a result,
we come to the following simplified algorithm:

T0=R0

for (i=1; i<n; i++) {

e
iiii f'TlgωJ 

ii ωψ 

)M(ψRR iii 

iii RTT
1



)(Rg iViki 

}

where M(ψ) – matrix of rotation around the vector ψ the value

| ψ |, V - inverse transform to get rotation vector.

As our experiments showed, this algorithm keeps good visual
illusion of animated grass blades.

3.2. Animation of wind force and direction

Similarly to [1] we use the cyclic Perlin noise texture. Wind

animation is done by summing up (with various scales ic) three

such textures moving with iw velocities (i=1, 2, 3). Resulting

wind speed vector W in the texel with u coordinates is calculated

with the formula:

u]RwT[W[u] iicti
i

ik 



3

1

where ik - scale coefficients, t – time, Ri- rotation matrices

defined by wi vectors.

While calculating wind force for each blade segment, we consider
velocity of the segment:


)v(W[u]f iwkw

i 

Here wk - coefficient depending on the blade width, vi- velocity

of the segment center,  - a constant depending on the grass

type (for example,  =4/3 for sedge). vi value is calculated

depending on
*

v 1i (velocity of the top of previous segment)

according to formula:

Velocities of the segment tops are found from recurrent relations:

3.3. Virtually-inertial animation model

This model provides results close to that for inertial model, but

doesn’t require storing current values of angle velocities and

general displacements for each grass blade, which allows us to use
instancing when rendering.

The idea of the virtually-inertial model is in carrying over inertial

component from calculation of the blade shape to calculation of

the wind force for this blade. That may be done if we put into

centers of wind force texels vertical virtual blades and calculate

their shape with inertial model. Afterwards we calculate the

moments that must be applied to blades segments in order to get
the same shape of static equilibrium:

G
'

Tlψm iiik
w
i 

where G – gravity (here, as well as in the previous paragraph do

not consider the effect of the upper segment to lower). These

moments are stored in the virtual wind texture that is used for the

grass blade animation when rendering with instancing, instead of
the actual wind forces.

Note that the blades covered by one texel of virtual wind texture

should be animated differently in spite of they are affected by the

same virtual wind. This is because they have various angles when
planting, so weight force impact is diverse.

To do so, we calculate the shape of a blade of grass so that the

condition of static equilibrium under the action of the virtual wind

and gravity, taking into account the slope of grass with seating.

The equation of static equilibrium for the i-th segment is as

follows:

G))'M(ψ(Tlmψ ii
w
iiik

1


With known matrix
1i

T this equation can be solved by simple

iteration. As our experiments showed, three iterations are enough
for coinciding visual results.

Thus, we arrive at the following algorithm for determining the
shape of a blade of grass:

0
TT 

for (i=1; i<n; i++){

G(TM(ψlmψ))'
w
iik

)TM(ψT i

iTT 

}

Here, the matrix T0 defined angle of seating.

3.4. Animation algorithm considering interaction
with other dynamic objects

For simulation of grass interaction with dynamic objects, as

mentioned in section 2.1, patches instead of blocks are used.

Blade data structures in patches contain fields for current

generalized velocities and moves, which allows us to use an

inertial model. Nevertheless, we continue to use virtual-inertial

model until the blade interacts with an object. At this moment the

blade segments are bent so that exclude intersections with the

object and its generalized velocities are set to zero. Later such
blade is calculated with inertial model.

This approach allows us to use an expensive inertial model only
for relatively small number (around a thousand) of grass blades.

Note that use of different models for close located blades doesn’t
lead to visual artifacts due to proximity of these models.

4. RESULTS

Visual results of our program are presented on Fig. 3, 4 screen

shots. Fig. 3 shows grass animation with a wind and Fig. 4 shows

the result of grass interaction with a dynamic object without and

with the wind. Video material can be can be found here:

http://dl.dropbox.com/u/28177387/GrassCar.avi

http://dl.dropbox.com/u/28177387/GrassPlain.avi

)ω(lT
*

vv iiii  1

)ω(lT
*

vv

v

iiii 



21
*

0
*
0

http://dl.dropbox.com/u/28177387/GrassCar.avi
http://dl.dropbox.com/u/28177387/GrassPlain.avi

Fig. 3. Grass animation with a wind

Fig. 4. Grass interaction with a dynamic object without and with

the wind.

The grass field covers the square with the side of 280 meters. The

number of grass blades in this square is 106. The program

performance for three PC configurations is given in the Table 1.

The column A contains results when both animation and

interaction with dynamic objects are absent. For B column there is

animation, but no interaction. At last, C column shows results

with both animation and interaction.

It is evident from the Table 1 that about 90% program time is

spent for visualization and only 10% - for processing interaction

with dynamic object and calculating blade shapes under wind.

That proves high efficiency of the developed algorithms and

possibility of their use in real-time programs.

PC configuration
A B C

FPS FPS FPS

Intel Pentium D CPU 3GHz

ATI ASUS EAH5450
28 26 24

Intel Core 2 Duo e8500

Nvidia GeForce 9600 GT
60 57 54

Intel Core 2 Duo e8500

ATI Radeon HD 6870
180 165 150

Table. 1. The program performance

5. ACKNOWLEDGEMENTS

The work was funded by Intel A/O (Agreement

#NN/R&D/66/2010).

6. REFERENCES

1. Alexandre Meyer, Fabrice Neyret. “Interactive Volumetric

Textures”. Eurographics Rendering Workshop, 1998.

2. Anu Kalra. “Rendering Grass with Instancing in DirectX*

10“, http://isdlibrary.intel-

dispatch.com/vc/2325/rendering_grass_32509.pdf, 2009.

3. By Changbo Wang, Zhangye Wang, Qi Zhou, Chengfang

Song, Yu Guan and Qunsheng Peng. “Dynamic modeling

and rendering of grass wagging in wind”. Comp. Anim.

Virtual Worlds, pp.377–389, 2005

4. “Cloth Simulation”. NVIDIA White Paper,

sdkfeedback@nvidia.com, 2007

5. David Whtley. “Toward photorealism in virtul botany”. GPU

Gems 2, pp. 7-25, 2005

6. J. Orthmann, C. Rezk-Salama, A. Kolb. “GPU-based

Responsive Grass”. In Journal of WSCG, 17, pages 65-72,

2009.

7. Ralf Habel, Michael Wimmer, Stefan Jeschke. “Instant

Animated Grass”.

http://www.cg.tuwien.ac.at/research/publications/2007/Habel

_2007_IAG/Habel_2007_IAG-Preprint.pdf, 2009.

8. Kevin Boulanger, Sumanta Pattanaik, Kadi Bouatouch.

“Rendering Grass in Real Time with Dynamic Lighting”.

IEEE Computer Graphics & Applications, vol. 29(1), pp. 32-

41, 2009.

9. Kurt Pelzer, Piranha Bytes. “Rendering Countless Blades of

Waving Grass”. GPU Gems.

Chapter 7, 2004.

10. Perbet F, Cani M-P. “Animating prairies in real-time”. In

Proc. the symposium on Interactive 3D graphics’, pp. 103-

110, 2001.

11. Roy Featherstone, D. Orin “Robot dynamics: equations and

algorithms”. Proceedings 2000 ICRA Millennium

Conference IEEE International Conference on Robotics and

Automation Symposia Proceedings Cat No00CH37065

(2000)

12. Sylvain Guerraz, Frank Perbet, David Raulo, Franc¸ois

Faure, Marie-Paule Can. “A Procedural Approach to

Animate Interactive Natural Sceneries”. Computer

Animation and Social Agents (CASA), 2003.

http://isdlibrary.intel-dispatch.com/vc/2325/rendering_grass_32509.pdf
http://isdlibrary.intel-dispatch.com/vc/2325/rendering_grass_32509.pdf

