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Abstract 

It is proposed an integrated solution for animation, interaction 

with dynamic objects and visualization of large grasslands. We 

use instancing for real-time visualization. For that, a new method 

for physics animation was developed which does not require 
saving generalized velocities and moves for each grass blade.  
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1. PREVIOUS WORKS 

There are three methods for the grass visualization: geometry-

based, image-based и volume-based. According to the first 

method, each grass blade is defined with a set of triangles. The set 

of the blades shapes a rectangle block. The block is visualized 

repeatedly in order to cover all the grass area. To speed up 

visualization, instancing technique is used. This geometry-based 

method was used in [3], [8] and [10] papers. The problem of this 

method is visualization of hundreds of millions of triangles. For 

cutting down this number, it was proposed in [3] to reduce the 

number of triangles in the blade if the latter is far from camera.  

Image-based method distinguishes from the described above with 

only one feature: the set of blades in the block is replaced with the 

set of billboards with the texture containing alpha channel; a set of 

blades is drawn on it. This method was used in [2], [5], [6] and [9] 

papers. Volume-based method was applied in [7, 8]. Based on 

these approaches, it is difficult to get high quality of visualization 
close to the camera. 

In order to increase visual realism, all mentioned methods are 

accompanied by the grass animation. In all cases it is used 

simplified model: the movements are proportional to the wind 

force and directed along its velocity vector. 

Grass interaction with dynamic objects during the animation 

process was considered in [12] and [6]. In the first of these papers 

real interaction was substituted with use of a special texture – the 

footprint of the moving object. In the second one the object 
interacted with billboards that simulated the grass.  

2. VISUALIZATION 

2.1. Basic principles 

We use geometry-based approach. According to it, similar to [8] 

rectangular blocks are created; each of them consists of a set of 

separate blades. These blocks are visualized on the terrain surface. 

A set of grass blocks makes up the rectangular grid which is 

mapped onto terrain such way that the central cell of the grid 

appears just under camera. When the camera moves on the 
adjacent grid cell the whole grid moves on the grid cell size. 

The grass covering is visualized by multiple repetition of the 

single grass block according to instancing method with correcting 

position and shape of each grass blade in compliance with the 

terrain height and wind force in the given point. 

Some part of the grass blocks is not included in instancing. These 

are the blocks in which interaction of grass blades with other 

dynamic objects is possible, as well as such interaction has 

occurred. For these blocks wind simulation calculations use 

numerical methods that require storing current positions and 

velocities of the grass blade tops, which excludes instancing. Let 

us denote these blocks “patches”. They are visualized as objects 

containing a set of grass blades.  

The grass block is a square containing N=n*n blades. In terms of 

DirectX10 each blade is a point containing four vertices and the 

normal determining rotation angle of the blade plane and the angle 

to the terrain surface, as well as geometry (length and height) and 

physics (mass and rigidity) characteristics. This data and the wind 

force vector are input data for the vertex shader to calculate the 

current location of the vertices and values of normals in them. 

Then, the geometry shader builds a cubic spline, that determines 

the blade triangles, number of which depends on the distance 
between the blade and the camera.  

2.2. Levels of detail and smooth transition 
between them 

We introduce three discrete levels of detail for the grass blocks, as 

well as possibility of smooth changing of detail within a level. To 

provide the possibility of smooth changing of detail, a weight 

coefficient is assigned to each blade in the block. When 

visualizing, the blade is discarded, if the following condition is 
valid: 

),( zFw   

where w – weight coefficient, F – some function, z – the distance 

from the camera to the blade,   - the angle between direction to 

the camera and normal to the terrain surface in the blade point.  

To define F function, note that the number of grass blades on a 

square unit must be proportional to the visible size of this square 

on the screen, i.e. proportional to (n,r) scalar product (where n – 

normal to the terrain surface and r – direction to the camera) and 
inverse proportional to the camera distance d: 
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In the denominator we take a square trinomial instead of camera 

distance d in order to avoid big numbers when camera comes near 
to the blade.  

In addition we take into account that on contour areas where (n,r) 

scalar product value is close to zero, the grass density should be 

high. To do that, instead of the scalar product we use the 

following expression:  
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where 
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Here α- a big number (we take it 8).  

Finally, F function looks as 
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This function is used both for discarding grass blades and for 

selecting the block’s discrete level of detail. In the first case d is 

the distance from the camera to the grass blade, in the second – to 
the block center. 

2.3. Lighting calculation 

For a single directional light source applied to a point of the 
surface of a blade, the radiance I is:
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Where aK is the material ambient color, dK - the diffuse 

reflectance factor of the blade material, aI - the intensity of the 

ambient light, N - the normal to the grass blade surface, L - the 

light direction, C – the factor to account for the color change of 

light traversing the grass blade fibers, dI  - the intensity of the 

light source. 

Because the grass blades shade each other, intensities of diffused 

and direct sun light should be considered as functions of distances 

between the blade base and top. We use the following 
dependences:   
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where 
*
aI , 

*
dI  - intensities on the blade top, 

**
aI  - intensity on 

the base, l – normalized distance from the base to the top.  

For Frenel effect simulation while calculating light for the blades 

on contour terrain areas we increase the calculated intensity value 

I  by sI value: 
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where sK  is the specular reflectance factor of the grass blade 

material, LN  - normal to the terrain surface and V  - vector of 

direction to the camera.  

3. ANIMATION 

3.1. Inertial animation model  

Let us represent the blade model with the chain of n linear 

segments, connected each to other with joints in which there are 

spherical springs (Fig. 1). We will denote the rigidity of these 

springs as ik where i – number of the joint. 

 
Fig. 1. The blade model for n = 4 

 

The coordinate system is assigned to each segment as shown on 

Fig. 1. The segments and joints are enumerated bottom-up. Zero 

segment is dummy and determines initial rotation and tilt angles 

of the blade when planting. Ground level is on the height of lower 
end of the first segment (joint 1). 

Let the following external forces 
e

fi  are applied to the segment 

centers – the forces, which are the sum of the wind force and the 
segment gravity (Fig. 2). 

 

 
Fig. 2 Forces and moments applied to the segment 

 

Let us write movement equation for i-segment in its coordinate 
system:  

 

 

 

 

 

 

 

 

 

 

 

Here:J– inertia tensor, iω  - vector of angle velocity of i-segment, 

iψ – vector determining rotation increment of the coordinate 

system of i-segment, relatively to the coordinate system of (i – 1) 

segment , ig - the moment because of spring in i-joint, iR  – 

matrix converting vectors from  the coordinate system of i-

segment to the coordinate system of (i-1)-segment (when i=0 – to 

the world coordinate system), iT  - matrix, converting vectors 

from  the world coordinate system to the coordinate system of i-

segment, ia - acceleration at the end of i-segment, l= (0,0,l)’, 

where l – a half of the segment length, m – mass of the segment. 

For integration of the system we can be used Featherstone 

algorithm [11]. However, the computational complexity of this 

integration is too expensive to calculate the animation of several 
thousand blades of grass in real time. 

We can simplify this system, if assume that: angle velocities are 

small and impact of higher segments on lower is much less, than 

reverse. The first assumption allows us to discard members 

containing squares of angular velocities, and the second – to 
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refuse of the second pass in Featherstone algorithm. As a result, 
we come to the following simplified algorithm:  

 

T0=R0  

for (i=1; i<n; i++) { 

e
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where M(ψ) – matrix of rotation around the vector ψ the value      

| ψ |, V - inverse transform to get rotation vector. 

As our experiments showed, this algorithm keeps good visual 
illusion of animated grass blades.  

3.2. Animation of wind force and direction  

Similarly to [1] we use the cyclic Perlin noise texture. Wind 

animation is done by summing up (with various scales ic ) three 

such textures moving with iw velocities (i=1, 2, 3). Resulting 

wind speed vector W  in the texel with u coordinates is calculated 

with the formula: 
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where ik - scale coefficients, t – time,  Ri- rotation matrices 

defined by wi vectors. 

While calculating wind force for each blade segment, we consider 
velocity of the segment: 


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Here wk - coefficient depending on the blade width, vi- velocity 

of the segment center,  - a constant depending on the grass 

type (for example,  =4/3 for sedge). vi value is calculated 

depending on 
*

v 1i  (velocity of the top of previous segment) 

according to formula: 

 

 

Velocities of the segment tops are found from recurrent relations: 

 

 

 

 

 

3.3. Virtually-inertial animation model  

This model provides results close to that for inertial model, but 

doesn’t require storing current values of angle velocities and 

general displacements for each grass blade, which allows us to use 
instancing when rendering.  

The idea of the virtually-inertial model is in carrying over inertial 

component from calculation of the blade shape to calculation of 

the wind force for this blade. That may be done if we put into 

centers of wind force texels vertical virtual blades and calculate 

their shape with inertial model. Afterwards we calculate the 

moments that must be applied to blades segments in order to get 
the same shape of static equilibrium: 

G
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where G – gravity (here, as well as in the previous paragraph do 

not consider the effect of the upper segment to lower). These 

moments are stored in the virtual wind texture that is used for the 

grass blade animation when rendering with instancing, instead of 
the actual wind forces. 

Note that the blades covered by one texel of virtual wind texture 

should be animated differently in spite of they are affected by the 

same virtual wind. This is because they have various angles when 
planting, so weight force impact is diverse.  

To do so, we calculate the shape of a blade of grass so that the 

condition of static equilibrium under the action of the virtual wind 

and gravity, taking into account the slope of grass with seating. 

The equation of static equilibrium for the i-th segment is as 

follows: 
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With known matrix 
1i

T  this equation can be solved by simple 

iteration.  As our experiments showed, three iterations are enough 
for coinciding visual results. 

Thus, we arrive at the following algorithm for determining the 
shape of a blade of grass: 
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for (i=1; i<n; i++){ 
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} 

 

Here, the matrix T0 defined angle of seating. 

3.4. Animation algorithm considering interaction 
with other dynamic objects 

For simulation of grass interaction with dynamic objects, as 

mentioned in section 2.1, patches instead of blocks are used. 

Blade data structures in patches contain fields for current 

generalized velocities and moves, which allows us to use an 

inertial model. Nevertheless, we continue to use virtual-inertial 

model until the blade interacts with an object. At this moment the 

blade segments are bent so that exclude intersections with the 

object and its generalized velocities are set to zero. Later such 
blade is calculated with inertial model. 

This approach allows us to use an expensive inertial model only 
for relatively small number (around a thousand) of grass blades. 

Note that use of different models for close located blades doesn’t 
lead to visual artifacts due to proximity of these models.  

4. RESULTS  

Visual results of our program are presented on Fig. 3, 4 screen 

shots. Fig. 3 shows grass animation with a wind and Fig. 4 shows 

the result of grass interaction with a dynamic object without and 

with the wind. Video material can be can be found here:  

http://dl.dropbox.com/u/28177387/GrassCar.avi 

http://dl.dropbox.com/u/28177387/GrassPlain.avi  
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Fig. 3. Grass animation with a wind 

 
Fig. 4. Grass interaction with a dynamic object without and with 

the wind. 

 

The grass field covers the square with the side of 280 meters. The 

number of grass blades in this square is 106. The program 

performance for three PC configurations is given in the Table 1. 

The column A contains results when both animation and 

interaction with dynamic objects are absent. For B column there is 

animation, but no interaction. At last, C column shows results 

with both animation and interaction. 

It is evident from the Table 1 that about 90% program time is 

spent for visualization and only 10% - for processing interaction 

with dynamic object and calculating blade shapes under wind. 

That proves high efficiency of the developed algorithms and 

possibility of their use in real-time programs.  

 

PC configuration 
A B C 

FPS FPS FPS 

Intel Pentium D CPU 3GHz  

ATI ASUS EAH5450 
28 26 24 

Intel Core 2 Duo e8500  

Nvidia GeForce 9600 GT 
60 57 54 

Intel Core 2 Duo e8500   

ATI Radeon HD 6870 
180 165 150 

Table. 1. The program performance 
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