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Abstract

In this paper, we present a new perspective to quantify the informa-
tion associated with a viewpoint. The starting point is twofold: a
visibility channel between a set of viewpoints and the polygons of
an object, and two specific information measures introduced respec-
tively by DeWeese and Meister (1999) and Butts (2003) to evalu-
ate the significance of stimuli and responses in the neural code. In
our approach, these information measures are applied to the visi-
bility channel in order to quantify the information associated with
each viewpoint and are compared with both viewpoint entropy and
viewpoint mutual information. A number of experiments show the
behavior of the proposed measures in best view selection.
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1. INTRODUCTION

In computer graphics, several viewpoint quality measures, such as
viewpoint entropy and viewpoint mutual information, have been
applied in areas such as best view selection for polygonal mod-
els [1, 2], scene exploration [3], and volume visualization [4, 5].
Best view selection is also a fundamental task in object recogni-
tion. Many works have demonstrated that the recognition process
is view-dependent [6, 7, 8]. On the one hand, Tarr et al. [7] found
that “visual recognition may be explained by a view-based theory
in which viewpoint-specific representations encode both quantita-
tive and qualitative features”. On the other hand, Palmer et al. [6]
and Blanz et al. [8] have presented different experiments demon-
strating that observers prefer views (called canonical views) that
avoid occlusions and that are off-axis (such as a three-quarter view-
point), salient (the most significant characteristics of an object are
visible), stable, and with a large number of visible surfaces.

In this paper, we propose two new viewpoint quality measures
that are respectively derived from two different decompositions
of mutual information proposed by DeWeese and Meister [9] and
Butts [10] in the field of neural systems to quantify the information
associated with stimuli and responses. First, we set an information
channel between a set of viewpoints and the polygons of an object,
and, then, we use those information measures to calculate the infor-
mation associated with a viewpoint. Experimental results show the
performance of these information measures to evaluate the quality
of a viewpoint. This paper is organized as follows. In Section 2, we
present the most basic information-theoretic measures and different
decompositions of mutual information that are applied to quantify-
ing the information associated with stimuli and responses. In Sec-
tion 3, two new viewpoint information measures are presented. In
Section 4, experimental results show the behavior of the proposed
measures to select the best views. Finally, in Section 5, our conclu-
sions and future work are presented.
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2. INFORMATION THEORY TOOLS

In this section, we present the most basic information measures and
also three different ways of decomposing the mutual information
between two random variables.

2.1 Basic Information Measures

Let X be a random variable with alphabet X and probability dis-
tribution {p(x)}, where p(x) = Pr{X = x} and x ∈X . Likewise,
let Y be a random variable taking values y in Y . A communication
channel X → Y between two random variables (input X and output
Y ) is characterized by a probability transition matrix (composed of
conditional probabilities) which determines the output distribution
given the input distribution [11].

The Shannon entropy H(X) of a random variable X is defined by

H(X) =− ∑
x∈X

p(x) log p(x). (1)

Entropy measures the average uncertainty of a random variable X .
All logarithms are base 2 and entropy is expressed in bits. The
convention that 0 log0= 0 is used. The conditional entropy H(Y |X)
is defined by

H(Y |X) = ∑
x∈X

p(x)H(Y |x), (2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability and
H(Y |x) = −∑y∈Y p(y|x) log p(y|x) expresses the uncertainty of Y
given x. H(Y |X) measures the average uncertainty associated with
Y if we know the outcome of X , and H(X)≥ H(X |Y )≥ 0.

The mutual information I(X ;Y ) between X and Y is defined by

I(X ;Y ) = H(Y )−H(Y |X) = ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log
p(y|x)
p(y)

. (3)

Mutual information expresses the shared information or depen-
dence between X and Y . That is, mutual information expresses how
much the knowledge of Y decreases the uncertainty of X , or vice
versa. It can be seen that I(X ;Y ) = I(Y ;X) ≥ 0. If X and Y are
independent, then I(X ;Y ) = 0.

2.2 Decomposition of Mutual Information

Given a communication channel X→Y , mutual information can be
decomposed in different ways to obtain the information associated
with a state in X or Y . Next, we present different definitions of
information that have been analyzed in the field of neural systems to
investigate the significance associated to stimuli and responses [9,
10].

For random variables S and R, representing an ensemble of stimuli
S and a set of responses R, respectively, mutual information (see
Equation 3) is given by

I(S;R) = H(R)−H(R|S) (4)

= ∑
s∈S

p(s) ∑
r∈R

p(r|s) log
p(r|s)
p(r)

, (5)



where p(r|s) is the conditional probability of value r known value
s, and p(S) = {p(s)} and p(R) = {p(r)} are the marginal proba-
bility distributions of the input and output variables of the channel,
respectively. Note that capital letters S and R as arguments of p(.)
are used to denote probability distributions.

To quantify the information associated to each stimulus or response,
I(S;R) can be decomposed as

I(S;R) = ∑
s∈S

p(s)I(s;R) (6)

= ∑
r∈R

p(r)I(S;r), (7)

where I(s;R) and I(r;S) represent, respectively, the information as-
sociated to stimulus s and response r. Thus, I(S;R) can be seen
as a weighted average over individual contributions from particu-
lar stimuli or particular responses. The definition of the contribu-
tion I(s;R) or I(S;r) can be performed in multiple ways, but we
present here the three most basic definitions denoted by I1, I2 [9],
and I3 [10].

Given a stimulus s, three information measures that fulfill (6) are:

• The surprise I1 can be directly derived from (5), taking the
contribution of a single stimulus to I(S;R):

I1(s;R) = ∑
r∈R

p(r|s) log
p(r|s)
p(r)

. (8)

This measure expresses the surprise about R from observing
s. It can be shown that I1 is the only positive decomposition
of I(S;R) [9]. This positivity can be proven by the fact that
I1(s;R) is the Kullback-Leibler distance [11] between p(R|s)
and p(R).

• The specific information I2 [9] can be derived from (4), taking
the contribution of a single stimulus to I(S;R):

I2(s;R) = H(R)−H(R|s) (9)

= − ∑
r∈R

p(r) log p(r)+ ∑
r∈R

p(r|s) log p(r|s).

This measure expresses the change in uncertainty about R
when s is observed. Note that I2 can take negative values.
This means that certain observations s do increase our uncer-
tainty about the state of the variable R.

• The stimulus-specific information I3 (see [10] for a proof):

I3(s;R) = ∑
r∈R

p(r|s)I2(S;r). (10)

A large value of I3(s;R) means that the states of R associated
with s are very informative in the sense of I2(S;r). That is,
the most informative input values s are those that are related
to the most informative output values r.

Similar to the above definitions for a stimulus s, the information as-
sociated to a response r could be defined. In the next sections, these
information measures will be studied with more detail in the context
of a communication channel between viewpoints and polygons.

The properties of positivity and additivity of these measures have
been studied in [9, 10]. A measure is additive when the informa-
tion obtained about X from two observations, y ∈ Y and z ∈Z , is
equal to that obtained from y plus that obtained from z when y is
known. While I1 is always positive and non-additive, I2 can take
negative values but is additive, and I3 can take negative values and
is non additive. Because of the additivity property, DeWeese and
Meister [9] prefer I2 against I1 since they consider that additivity is
a fundamental property of any information measure.

3. VIEWPOINT QUALITY MEASURES

In this section, we present the main elements of the communica-
tion channel between viewpoints and polygons, and then we define
the viewpoint information measures derived from the measures pre-
sented in Section 2.2.

3.1 Visibility Channel

In this section, we review the elements of an information channel
between a set of viewpoints and the set of polygons of an object.

In [2], a viewpoint selection framework was proposed from an in-
formation channel V → Z between the random variables V (input)
and Z (output), which represent, respectively, a set of viewpoints V
and the set of polygons Z of an object. This channel is defined by
a conditional probability matrix obtained from the projected areas
of polygons at each viewpoint and can be interpreted as a visibility
channel where the conditional probabilities represent the probabil-
ity of seeing a determined polygon from a given viewpoint. View-
points are indexed by v and polygons by z. The three basic elements
of the visibility channel are:

• Conditional probability matrix p(Z|V ), where each element
p(z|v) = az(v)

at
is defined by the normalized projected area of

polygon z over the sphere of directions centered at viewpoint
v, az(v) is the projected area of polygon z at viewpoint v, and
at is the total projected area of all polygons over the sphere of
directions. Conditional probabilities fulfil ∑z∈Z p(z|v) = 1.
The background is not taken into account.

• Input distribution p(V ), which represents the probability of
selecting each viewpoint, is obtained from the normalization
of the projected area of the object at each viewpoint. The input
distribution can be interpreted as the importance assigned to
each viewpoint v.

• Output distribution p(Z), given by p(z) = ∑v∈V p(v)p(z|v),
which represents the average projected area of polygon z.

From this visibility channel, different measures of viewpoint qual-
ity, such as viewpoint entropy [1] and viewpoint mutual informa-
tion [2], have been defined in the past.

3.2 Viewpoint Information Measures

In this section, the information measures I1, I2 and I3 presented in
Section 2.2. are applied to the above visibility channel. Although
this perspective of analyzing the viewpoint quality is new, it is im-
portant to note that I1 is equivalent to viewpoint mutual informa-
tion [2] and I2 has a close relationship with viewpoint entropy [1].

Given the visibility channel V → Z, the viewpoint information is
defined in the following three alternative ways:

• From (8), the viewpoint information I1 of a viewpoint v is
defined as

I1(v;Z) = ∑
z∈Z

p(z|v) log
p(z|v)
p(z)

. (11)

Observe that I1 coincides with the viewpoint mutual informa-
tion defined in [2]. The lowest value of I1 (i.e., I1(v;Z) = 0)
would be obtained when p(Z|v) = p(Z). This means that the
distribution of projected areas at a given viewpoint (p(Z|v))
would coincide with the average distribution of projected ar-
eas from all viewpoints (p(Z)). In this case, the view is con-
sidered maximally representative. Thus, while the most sur-
prising views correspond to the highest I1 values, the most



representative ones correspond to the lowest I1 values. The
best viewpoint is defined as the one that has the lowest value
of I1 (i.e., maximum representativeness).

• From (9), the viewpoint information I2 of a viewpoint v is
defined as

I2(v;Z) = H(Z)−H(Z|v) (12)

= − ∑
z∈Z

p(z) log p(z)+ ∑
z∈Z

p(z|v) log p(z|v).

While the highest value of I2 would correspond to a view-
point that could only see one polygon, the lowest value of I2
would be obtained if a viewpoint could see all polygons with
the same projected area. In this case, the view is maximally
diverse. The best viewpoint is defined as the one that has the
lowest value of I2 (i.e., maximum diversity).

Specific information I2(v;Z) is closely related to viewpoint
entropy, defined as H(Z|v) [1, 2], since I2(v;Z) = H(Z)−
H(Z|v). As H(Z) is constant for a given mesh resolution,
I2(v;Z) and viewpoint entropy will essentially have the same
behavior in viewpoint selection because the highest value of
I2(v;Z) corresponds to the lowest value of viewpoint entropy,
and vice versa. An important drawback of viewpoint entropy
is that it goes to infinity for finer and finer resolutions of the
mesh (see [2]), while I2 presents a more stable behavior due
to the normalizing effect of H(Z) in (12). The advantage of I2
against viewpoint entropy could be appreciated in areas such
as object recognition and mesh simplification. In the first case,
the stable behavior of I2 would enable us to compare the ob-
tained values for objects with different mesh resolutions and,
in the second case, I2 would take into account the variation of
H(Z) in the simplification process.

• From (10), the viewpoint information I3 of a viewpoint v is
defined as

I3(v;Z) = ∑
z∈Z

p(z|v)I2(V ;z), (13)

where I2(V ;z) is the specific information of polygon z given
by

I2(V ;z) = H(V )−H(V |z) (14)

= − ∑
v∈V

p(v) log p(v)+ ∑
v∈V

p(v|z) log p(v|z).

A high value of I3(v;Z) means that the polygons seen by v are
very informative in the sense of I2(V ;z). The most informative
viewpoints are considered as the best views and correspond
to the viewpoints that see the highest number of maximally
informative polygons.

As we have seen above, I1(x;Y ), I2(x;Y ), and I3(x;Y ) represent
three different ways of quantifying the information associated with
a viewpoint v. Observe that we consider that the best views corre-
spond to the lowest values of I1 and I2, and the highest values of
I3; and the contrary for the worst views. That is, the goodness of
a viewpoint is associated with its representativeness (minimum I1),
diversity (minimum I2), and informativeness (maximum I3). The
word ‘informativeness’ is used here to express the capability of I3
to capture information from the polygons of the object. Another
aspect to take into account is that the concept of ‘best’ or ‘worst’ is
relative to the objective we pursue. Thus, for instance, the ‘worst’
view in the sense of I2 could be used to select the view with the
lowest diversity, such as the one that better shows the structure of a
molecule (see [12]).

Number of polygons Computational cost
Coffee cup 10732 3526 ms

Horse 43571 3650 ms
Ship 48811 3822 ms

Lady of Elche 51978 3946 ms

Table 1: Number of polygons of the models used and computa-
tional cost of the preprocess step for each model in miliseconds.

4. RESULTS

In this section, the behavior of I1, I2, and I3 is analyzed. To calcu-
late these measures, we need to obtain the projected area of every
poligon for every viewpoint, and these areas will enable us to ob-
tain the probabilities of the visibility channel (p(V ), p(Z|V ), and
p(Z)). In this paper, all measures have been computed without
taking into account the background, and using a projection reso-
lution of 640×480. In our experiments, all the objects are centered
in a sphere of 642 viewpoints built from the recursive discretisa-
tion of an icosahedron and the camera is looking at the center of
this sphere. To obtain the viewpoint sphere, the smallest bound-
ing sphere of the model is obtained and, then, the viewpoint sphere
adopts the same center as the bounding sphere and a radius three
times the radius of the bounding sphere.

In Table 1 we show the number of polygons of the models used
in this section and the cost of the preprocess step, i.e., the cost of
computing the projected areas az(v) and at . To show the behavior
of the measures, the sphere of viewpoints is represented by a color
map, where red and blue colors correspond respectively to the best
and worst views. Remember that a good viewpoint corresponds to
a low value of I1 and I2, and to high value of I3. Our tests were run
on a Intel c© CoreTM i5 430M 2.27GHz machine with 4 GB RAM
and an ATI Mobility RadeonTM HD 5470 with 512 MB.

To evaluate the performance of the viewpoint quality measures, four
models have been used: a coffee cup, a horse, the Lady of Elche,
and a ship. Figure 1 has been organized as follows. Rows (i),
(iii) and (v) show, respectively, the best (columns (a-d)) and worst
(columns (e-h)) views corresponding to I1, I2 and I3, and rows (ii),
(iv), and (vi) show the viewpoint spheres corresponding to the views
shown in rows (i), (iii) and (v), respectively.

While the best views selected by I1 show a global view of the ob-
ject, the best views obtained by I2 capture the maximum number
of polygons in a balanced way (i.e., with a similar projected area).
This means that I2 has a high dependence of the resolution of the
mesh, trying to see the areas with a finer discretization. On the con-
trary, it has been shown in [2] that I1 is very robust with respect
to the variation of the mesh resolution. The behavior of I3 is very
different of the one of I1 and I2 because the view with maximum I3
tries to see the most informative polygons, that in general are placed
in the most occluded, salient, and complex areas of the object. To
better appreciate the behavior of I3, the best and worst views (see
row(v)) show the degree of informativeness of each polygon using a
thermal scale, from blue (minimum information) to red (maximum
information). Thus, it can be easily seen how I3 selects the views
with the highest informativeness. It is also important to note that a
similar view can be considered as the best for one measure and the
worst for another. See for instance the best and worst view of the
coffee cup for I2 and I1, respectively (Figures 1(iii.b) and 1(i.f)),
and the best and worst view of the horse for I3 and I1, respectively
(Figures 1(v.c) and 1(i.g)).

5. CONCLUSIONS

In this paper, we have presented a new perspective based on the de-
composition of mutual information to study the quality of a view-
point. Two measures of specific information introduced in the field
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Figure 1: Rows (i), (iii), and (v) show, respectively, the best (a-d) and the worst (e-h) views of four models, obtained with I1, I2, and I3. Rows
(ii), (iv), and (vi) show, respectively, the viewpoint spheres corresponding to the views shown in rows (i), (iii), and (v).

of neural systems have been adapted to quantify the information
associated with a viewpoint. These measures have been compared
with viewpoint entropy and viewpoint mutual information, and dif-
ferent experiments have shown their performance in best view se-
lection. The concepts of surprise, diversity, and informativeness
associated with a viewpoint have been also discussed. Further re-
search will be done to analyze the use of the new measures to select
N best views, to explore a scene, and to compute the information
associated with the polygons of an object.
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