
Several approaches for improvement of the Direct Volume Rendering in

scientific and medical visualization

Nikolay Gavrilov, Alexandra Belokamenskaya, Vadim Turlapov

Laboratory of Computer Graphics

Lobachevsky State University of Nizny Novgorod, Russia

{gavrilov86, alexandra.belokamenskaya, vadim.turlapov}@gmail.com

Abstract

This paper presents Direct Volume Rendering (DVR)

improvement strategies, which provide new opportunities for

scientific and medical visualization which are not available in due

measure in analogues: 1) multi-volume rendering in a single space

of up to 3 volumetric datasets determined in different coordinate

systems and having sizes as big as up to 512x512x512 16-bit

values; 2) performing the above process in real time on a middle

class GPU, e. g. nVidia GeForce GTS 250 512 MB; 3) a custom

bounding mesh for more accurate selection of the desired region in

addition to the clipping bounding box; 4) simultaneous usage of a

number of visualization techniques including the shaded Direct

Volume Rendering via the 1D- or 2D- transfer functions, multiple

semi-transparent discrete iso-surfaces visualization, MIP, and

MIDA. The paper discusses how the new properties affect the

implementation of the DVR. In the DVR implementation we use

such optimization strategies as the early ray termination and the

empty space skipping. The clipping ability is also used as the

empty space skipping approach to the rendering performance

improvement. We use the random ray start position generation

and the further frame accumulation in order to reduce the rendering

artifacts. The rendering quality can be also improved by the on-

the-fly tri-cubic filtering during the rendering process. Our

framework supports 4 different stereoscopic visualization modes.

Finally we outline the visualization performance in terms of the

frame rates for different visualization techniques on different

graphic cards.

Keywords: GPGPU, ray casting, direct volume rendering, medical

imaging, empty space skipping, section by arbitrary mesh.

1. INTRODUCTION

In scientific visualization it is often necessary to deal with some

volumetric regular scalar datasets. These data may be obtained by

some numerical simulation or via the scanning equipment such as

tomographs. The output data of the CT scan is a series of the

slices, i.e. two-dimensional scalar arrays of 16-bit integer values.

The stack of such slices can be interpreted as a volumetric dataset

which can be visualized as a 3D object.

Since the 90s, the Direct Volume Rendering shows itself as an

efficient tool for the visual analysis of volumetric datasets [1-4].

Different established approaches [4] make possible the

implementation of the real-time volume rendering by using the

parallel and high-performance computations on the GPU. The

recent progress in GPGPU computations makes the real-time

multi-volume rendering possible [1]. In this paper we make a

review of general details of our Ray Casting implementation,

which allows for the performance and quality improvement of the

available visualization methods.

1.1 The framework development motivation

There was a need in a volumetric visualization of the molecular

dynamic simulation of the electron bubble transport process.

There was a number of different volumetric datasets being

obtained during this simulation, representing different scalar and

vector fields. These datasets should be visualized together, in a

single space.

Figure 1: Features that we have implemented in our visualization

software: the multi-volume rendering (left); volumetric clipping via

the custom polygonal mesh (right).

However, there was no scientific visualization software available,

which could satisfy our needs in the visual analysis of the

scientific multi-volume time-varying volumetric datasets we had.

We wanted to be able to add several desired specific features in

our own visualization framework. For instance, the interactive

volumetric section via the arbitrary polygonal mesh can be

efficiently used for the interactive and suitable selection of the

region of interest, and we have not found any solutions with this

feature. There is no multi-volume rendering software available as

well, so its development is still in the research domain. Below we

make a review of some significant visualization software solutions

we have encountered.

The Voreen (http://www.voreen.org/) is an open source volume

rendering engine, which can be nicely used for some scientific

datasets visualization and the rendering quality is good enough.

But when dealing with some big dataset (e.g. 512³ cells) it appears

to be hardly a real-time visualization. Moreover, there is no

support for the multi-volume datasets rendering if we want to

render several datasets together in one space.

http://www.voreen.org/

The OsiriX (http://osirix-viewer.com) viewer is designed for the

medical staff and has a lot of features, but it is the MacOs-only

software. And while it is the medical imaging software, it can be

hardly used for the scientific data visualization, because the user

may want to obtain some specific data visual representation.

The Fovia’s (http://fovia.com) CPU-based Ray Casting efficiency

shows that even such GPU-suitable algorithms, like the Ray

Casting, are still may be implemented fully on the CPU with the

same or better results. However, while the graphical cards’

performance, availability and architecture flexibility increases, the

CPU-based efficient Ray Casting implementation is a very

difficult task. Besides, the Fovia has no the desired features like

multi-volume rendering and polygonal mesh based volumetric

clipping.

2. METHODS AND ALGORITHMS

In this section we make a brief inspection of the Ray Casting and

some other algorithms we have implemented in our system. All of

these algorithms and are implemented as the GLSL shaders.

2.1 Rendering methods

Due to the high flexibility of the Ray Casting (RC) method there is

a huge amount of different possible visualization techniques. The

RC algorithm calculates each pixel of the image by generating

(casting) rays on the screen plane and traversing them towards the

observer viewing direction. Each of the RC-based rendering

algorithms takes the ray start position and its direction as the

input parameters, and the pixel color as the algorithm output.

There are six rendering techniques in our framework and each of

them supports multi-volume rendering, i.e. these algorithms can

handle several volumetric datasets, which are arbitrary located in

the world space. The dataset’s location is determined by the

transformation 3x4 matrix. In addition to the volume’s position

and orientation, this matrix also defines the spacing by x, y and z

components, which allows for the proper volume scaling. So to

perform a sampling from the arbitrary located dataset we multiply

the sampling point by this matrix, so we will get the sampling

point in the volume’s local coordinate system.

In order to perform the GPU-based Ray Casting, we use GLSL

shaders to calculate the screen plane’s pixel colors, like it is done

in the Voreen framework. Each of the rendering methods in our

framework is defined by some GLSL fragment shader program, i.e.

a text file with the GLSL code. These methods differ from each

other, but they uniformly handle all visualization parameters, e.g.

the observer position, transfer functions, iso-surfaces, anaglyph

matrix, etc. So it is easy for us to add new RC-based rendering

techniques in our visualization framework.

2.1.1 Maximum Intensity Projection (MIP)

The Maximum Intensity Projection (MIP) is one of the most

usable volumetric visualization modes in the medical imaging [3].

It is easy for clinicians to interpret an MIP image of blood vessels.

Figure 2: MIP images of the brain vessels (left) and the dental

datasets.

The maximal intensities of the volumetric dataset are projected

onto the screen plane. Usually the projected intensity determines

the pixel’s color in the gray-scaled manner (Figure 2). It medical

imaging there is a window/level concept. The window is

represented by two scalar values – the window width and window

center.

2.1.2 The shaded Direct Volume Rendering (sDVR)

The shaded DVR technique is also used in a medical exam, but its

usage is more limited [2]. In contrast to the MIP technique here

we can use the early ray termination approach, which

considerably improves the rendering performance without any

image visible changes. This termination can be done because of the

DVR algorithm nature – while traversing throw the volume data,

the ray accumulates color and opacity, i.e. the optical properties,

defined by the transfer function (TF). While the opacity increases,

the contribution to the final pixel’s color decreases. This opacity

accumulation is commonly used to visualize the data as a realistic

volumetric object.

Figure 3: The scientific (left) and medical (right) data

visualization by the DVR and sDVR techniques.

2.1.3 Semi-transparent iso-surfaces

Semi-transparent iso-surfaces are usually used for the scientific

data visualization, because these surfaces are easier to interpret

when examining some new phenomena. One of the main

advantages of this method over the DVR’s one is a surface’s

visualization high quality: here we can search for more exact

intersection with the surface, a so called Hitpoint Refinement [5],

while in DVR there are no surfaces. There are opaque regions in

DVR, but theirs accurate visualization requires more difficult

algorithm, and its laboriousness considerably reduces the

performance of the GPU-implementation.

http://osirix-viewer.com/
http://fovia.com/

Figure 4: Semi-transparent iso-surfaces via the Ray Casting

algorithm. The CT tooth dataset (left) and the simulated electron

bubble transport process (right).

This method searches for ray’s intersections with the iso-surfaces.

When the ray passes across the iso-value, we calculate a more

exact intersection point determined by the ray positions and

sampled values on the current and previous steps. The linear

interpolation is enough to obtain a desired result.

2.2 Optimization strategies

2.2.1 Early ray termination

The Early ray termination technique is a common optimization

strategy for a Ray Casting algorithm. It is possible to terminate

the RC algorithm for each individual ray if the accumulated

opaqueness is close to 1. However, in rendering techniques like the

MIP it is necessary to browse the whole ray path until leaving the

bounding volume.

2.2.2 Empty space sk ipping via the volumetric clipping

The custom bounding polygonal mesh can be used either for the

rendering acceleration [5] or for the data clipping, as an alternative

to the dataset’s segmentation. We use OpenGL frame buffers to

store the distances from the viewpoint to the mesh front and back

faces. The buffers may contain up to 4 ray path segments (in [5]

there is only one segment), so that the mesh is not required to be

convex. Of course, before using these buffers we should fill them

with some relevant data. To do it we draw the bounding mesh by

calling common OpenGL instructions and perform rendering into

the texture. We use a specific GLSL shader program to fill pixels

with the relevant data instead of the standard OpenGL coloring.

The program calculates the current distance between the observer

and the fragment position. The only varying parameter is the

fragment position, i.e. the point on the mesh surface. After the

buffers are filled with the relevant distances, the Ray Casting may

be performed (Figure 5). For each ray it is known, what segments

of the ray path should be traversed.

2.3 Rendering artifacts reduction

Because of the finite steps’ number the ray may skip some

meaningful features in the dataset, even if the ray step is much less

than the voxel’s size. As a result the ‘wood-like’ image artifacts

may appear. This wood-likeness appears because each ray starts

from the same plane (e.g. from the bounding box face). This

artifacts’ regularity can be removed by randomizat ion of the ray

start positions. The final image will contain ‘noisy’ artifacts

instead of ‘regular’ ones. If a user does not change the viewpoint

and other visualization settings, these random frames can be

accumulated by such a way that a user will see an average image

that contains no noise (Figure 8).

Figure 5: The illustration of the volumetric clipping algorithm.

The yellow regions of the screen plane identify pixels, where are

only one path segment inside the bounding mesh. In the white

region there are two path segments for the rays in the Ray Casting

algorithm.

Figure 6: The source dataset (left) and its acceleration structure

(right) visualization. Visible ‘bricks’ identify regions of interest

that contain some visible features.

Figure 7: Empty space skipping: via the regular acceleration

structure (left); via the bounding mesh (right).

Figure 8: Before (left) and after (right) the DVR ‘wood-like’

artifacts’ reduction by the frames accumulation approach.

Figure 9: Tri-linear (left) and tri-cubic (right) on-the-fly

samplings for the Ray Casting algorithm.

The visualization quality can be improved also via the tri-cubic

filtering instead of the common tri-linear one. We have extended

the algorithm for the two-dimensional case, presented in [7].

Considering the embedded bi-linear texture filtering ability, we can

make only four samplings to calculate the bi-cubic interpolated

value. In order to perform a single tri-cubic sampling it is

necessary to make 8 basic tri-linear samplings from the same

dataset, but in fact we will calculate the data value, determined by

64 nearest voxels’ values.

3. PERFORMANCE ACCELERATION RESULTS

In table1 we have outlined obtained rendering performance

improvement by using the space skipping technique based on the

clipping via bounding polygonal mesh (Figure 6). The Acceleration

1 and 2 in table1 mean that tri-linear and tri-cubic on-the-fly

samplings were used in experiments.

Data Size Acceleration 1 Acceleration 2

Head 512³ 1.6 3

Dental 512x512x331 1.7 3.2

Feet 512x512x250 2 3.6

Table 1: Rendering performance improvement by volumetric

polygonal clipping approach.

Figure 10: Test CT datasets (left to right): head, dental, feet .

4. CONCLUSIONS

The proposed framework can be used for the multi-modal medical

data examination. A user can load datasets of the CT and MRI

modalities as DICOM slices. Each dataset is determined by its

own coordinate system and a user can properly place datasets

together in the space via the control points, so that the user sees

the comprehensive 3D-picture of the medical examination. The

real-time rendering is performed on consumer graphic cards.

The framework is also good for stereo demonstrations via the

stereo-pare of projectors, anaglyph, interlaced rendering or stereo-

monitors (like Zalman with passive polarized glasses) or with

shutter glasses via the nVidia 3D Vision technology.

The volumetric clipping option is performed via the arbitrary

polygonal mesh. The triangles number is not sufficient and does

not impair the rendering performance, so the mesh may have a

rather complex structure and may be fitted to the visible features

in the space. The clipping may be used either for the performance

improvement or for the interactive manual data segmentation in

order to select the volumetric region of interest. We define the

bounding mesh as the triangulated visible cells of the regular

acceleration structure. This acceleration technique improves the

rendering performance up to four times.

5. AKNOLEDGMENTS

This work was supported by the federal target program "Research

and scientific-pedagogical cadres Innovative Russia" for 2009-

2013, state contract № 02.740.11.

6. REFERENCES

[1] Kainz B. et al, 2009. Ray Casting of Multiple Volumetric

Datasets with Polyhedral Boundaries on Manycore GPUs.

Proceedings of ACM SIGGRAPH Asia 2009, Volume 28,

No 152.

[2] Lundström C., 2007. Efficient Medical Volume Visualization:

An Approach Based on Domain Knowledge. Linköping

Studies in Science and Technology. Dissertations; No. 1125.

[3] Geoffrey D., 2000. Data explosion: the challenge of

multidetector-row CT. In IEEE Transactions on European

Juornal of Radiology. Vol. 36, Issue 2, pp 74-80.

[4] Klaus E. et al, 2004; Real-Time Volume Graphics, A.K.

Peters, New York, USA.

[5] Scharsach H., 2005. Advanced GPU raycasting. In Central

European Seminar on Computer Graphics, pp. 69–76.

[6] Gordon L., 1999. Semi-automatic generation of transfer

functions for direct volume rendering. A Thesis Presented to

the Faculty of the Graduate School of Cornell University in

Partial Fulfillment of the Requirements for the Degree of

Master of Science.

[7] Daniel R. et al, 2008. Efficient GPU-Based Texture

Interpolation using Uniform B-Splines. Journal of Graphics,

GPU, & Game Tools, Vol. 13, No. 4, pp 61-69.

[8] Grimm S. et al, 2004. Memory Efficient Acceleration

Structures and Techniques for CPU-based Volume

Raycasting of Large Data. Proceedings of the IEEE

Symposium on Volume Visualization and Graphics 2004. pp

1 – 8.

