
Multithreaded approach for lossless LiDAR data compression

Domen Mongus, Denis Špelič, Borut Žalik
Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova ul. 17, SI 2000 Maribor, Slovenia
{domen.mongus, denis.spelic, zalik}@uni-mb.si

Abstract

Light detection and ranging (LiDAR) has the capability of capturing
a huge amount of highly accurate spatial data. However, the size of
the data causes a lot of problems associated with its exchange and
storage. In this paper, a method for lossless LiDAR data compres-
sion is presented. Although, efficient methods in terms of compres-
sion ratio have already been proposed, their time efficiency can be
improved. For this purpose, a multithreading schema was devel-
oped to increase the use of the computer resources (i.e. multi-core
central processor unit and direct memory access). In this way, the
overall compression time has been reduced over 70%.

Keywords: LiDAR, multithreading, lossless compression, predic-
tive coding.

1. INTRODUCTION

In the recent years, light detection and ranging (LiDAR) has be-
come one of the prime remote sensing technologies [1, 2, 3]. Most
of its capabilities arise from the use of the laser light to measure the
range from the distant objects. The range is calculated based on the
time delay between the transmission of the laser pulse and detection
of its reflection [4]. Since a short wavelength signal is used, LiDAR
achieves high accuracy and performs the measurements extremely
fast [5]. As such, it is able to capture large amount of highly accu-
rate and dense data in a short time. Because of this, it becomes one
of the most widely used techniques within a wide range applications
[6, 7, 8].

LiDAR is especially important in geosciences, where relatively
large Earth’ s surface can be gathered by airborne LiDAR
systems[1, 2, 3, 6, 7, 8]. The airborne LiDAR systems are mounted
on aircrafts and obtain geographical position of measured points by
the use of the global positioning system (GPS) and inertial mea-
surement unit (IMU) [5]. GPS is used to define the position of the
aircraft, while IMU measures the roll, the pitch, and the heading of
the aircraft. By that, and by measuring the scan angle, the angu-
lar orientation of each point is established and thus, the position of
the point can be defined (see Fig. 1). Furthermore, such systems
are capable to distinguish between different reflections of the emit-
ted laser pulse. In this way, they can retrieve some points from the
Earth’s surface even below the vegetation [4].

The gathered points are usually saved in a LAS file, which repre-
sents the industrial standard for storing and exchanging LiDAR data
[9]. In a LAS format, points are represented by xyz-coordinates.
Scalar values are associated with each point thet represents, for
example, an intensity, a reflection number or user specified data.
Exact specification depends on the version of the LAS format. Be-
cause LiDAR systems can perform over 200.000 measurements per
second (which allows retrieving over 35 points per square meter),
such files become extremely large. They often contain several tens
of millions of points and their size can easily reach more than a
few gigabytes. Therefore, to store such files is difficult, while their
exchange over the local networks and internet is practically impos-
sible. Because of this, the compression of LiDAR data is of great

relevance to the remote sensing community [5]. However, as huge
files have to be compressed (and decompressed), the time for com-
pression represents another important factor for efficient maintain-
ing of the data.

In this paper, we present a multithreaded approach for LiDAR data
compression, which exploits multi-core central processor units to
speed up the compression process. In section 2, related work on
LiDAR data compression is briefly presented. Brief description of
the used compression method is given in section 3. In section 4,
the multithreaded approach is explained in details. The results are
presented in section 5. Section 6 concludes the paper.

2. RELATED WORK

Early works on point compression were closely related to com-
pressing the topology of the triangular meshes. Thus, one of the ear-
liest methods presented in [10] uses triangular mesh, beside which
the geometry of points is compressed. The method uses a predic-
tion of the next points position. For this purpose, the triangular
mesh is divided into stripes. Points are then compressed based on
the order of their appearances in such stripes, where the position
of the next point is encoded using linear prediction schema [11].
In this way, only the differences between predicted and actual po-
sitions of points are stored. Since this approach compresses the
topology as well as the geometry of triangular mesh, it is not suit-
able for LiDAR data, where neighbouring relations of points are
not known (we are talking about unstructured points). The efficient
compression of unstructured point-cloud usually requires to find the
points that are close enough in the space, to enable utilization of the
prediction paradigm. The method described in [12] establishes a
correlation between the points by using an octree-based space par-
titioning schema. This algorithm predicts the location of the next
point with regard to the approximated planes in the octree cells. A
similar spatial hierarchy is used in the algorithm of Huang et al.
[13]. It also supports the compression of scalar values attached to
the points. Both, the point coordinates and the attached scalar val-
ues are represented by using an average value in the surrounding
tree cells. Other approaches apply prediction vectors to estimate
the coordinates of the next point in the stream. For example, the
algorithm proposed in [13] predicts the location of the next point
using the vector between the last two points before the observed
one. Besides this, they introduced additional rules for rotating of
the prediction vector.

The algorithm proposed in [14] is one of the earliest, aimed for Li-
DAR data compression. It utilizes the Delaunay triangulation [15]
for planes approximation and the wavelet transform to update the
values of the points coordinates. This method is very efficient with
regard to the compression ratio but, simultaneously, it is slow and
lossy. The algorithm proposed by Isenburg [16] is also intended
to compress LiDAR data. At the moment, it is accessible only as
a demo program, while the implementation details are not known
to the public. However, in terms of compression ratio, even more
efficient algorithm was presented by Mongus and Žalik in [17] (ex-
ecution version is available at [18]). To seed-up the compression
process, a multithreaded implementation is suggested in this paper.



Figure 1: Gathering of airborne LiDAR data.

Because of this, this method will be briefly explained in the next
section.

3. LOSSLESS LIDAR DATA COMPRESSION AL-
GORITHM

The considered method for compression of LAS files uses domain-
specific information about the LiDAR data gathering. In this way,
the correlation between points can be established without an addi-
tional space partitioning. The method works in three steps:

1. Points are encoded with a predictive coding scheme.

2. The errors in the prediction are coded with the variable-
length-coding (VLC).

3. VLC values are compressed with arithmetic coder (AC) and
stored in the output file.

In the prediction model, three prediction rules are used to estimate
the positions of the points, while constant prediction rule is used do
predict their scalar values (details are given in [17]):

• Constant prediction rule presumes that the values of the same
attribute of two successive points are the same. Because the
consequent scalar values of LiDAR points are often very sim-
ilar, the constant prediction rule is highly efficient. On the
other hand, the positions of successive points are never the
same. Therefore different prediction rules are proposed for
them.

• Prediction rule for x-coordinate uses the average distance be-
tween x-coordi-nates of the successive points. In addition, the
deviation of the last few samples (100 have been used in our
case) are used, and by the help of the linear interpolation, in-
cluded in the final prediction.

• Prediction rule for y-coordinate exploits the difference be-
tween successive points x-coordinate to predict the y-
coordinate of the coded point. Usually, the large distance in
x-coordinate results in a large distance in y-coordinate, too.
Thus, the history of the coded points is searched to find two
successive points with a similar difference in x-coordinate. If
such points are found, their differences in y-coordinate should
match, too. If the match is not found, the linear approximation
between previous y-coordinates is used for prediction.

• Prediction rule for z-coordinate applies a similar concept as
the prediction for y-coordinate. However, it uses both x and y
coordinates.

Because predictions made by described prediction model are accu-
rate, the absolute values of prediction errors are small and the VLC
can be efficiently applied. In the VLC step, the description byte is
added to each value, where the information about sign and length
(in bytes) of each value are stored. Thus, the zero bytes can be
removed from each value. Furthermore, description bytes, as well
as non-zero bytes of the same importance, are arranged in the sep-
arated byte streams. Each of those streams is then independently
compressed by arithmetic coding (AC) [11] and stored to output
file. This independency makes the algorithm suitable for multipro-
cessor programming, introduced in the next section.



4. MULTITHREAD APPROACH FOR LIDAR DATA
COMPRESSION

As already stated, most of the LiDAR point attributes are coded
independently and therefore they can be processed simultaneously.
Thus, by the use of multithreading, multi-core central process units
(CPU) and direct memory access (DMA) [19] can be exploited for
a considerable reduction of the time needed for LiDAR data com-
pression. In the Fig. 2, the scheme of the proposed approach is
presented.

A set of LiDAR points, which represents an input in our method,
is rearranged into a set of data-streams. Each data-stream contains
the values of the same LiDAR point attribute. Because only pre-
dictions of xyz-coordinates are mutually dependent (prediction for
y is dependent on x values and prediction for z is dependent on x
and y values), one thread is created for each data-stream and one
for processing xyz-coordinates. It is obvious that most of the CPU
time is used to predict xyz-values and thus, corresponding thread
should have a higher priority. In this way, the processing of the
data-streams is more synchronized and consecutively less CPU time
is lost in the last synchronisation step. However, after the predic-
tive coding step for the xyz-coordinates is completed, VLC can be
preformed for xyz-coordinates simultaneously as well. Therefore,
two more threads are created (for y-coordinates and z-coordinates),
while the priority of the current one (x-coordinates) is set back to
normal. Furthermore, in the VLC step, each data-stream is fur-
ther split into four byte-streams. Because each byte-stream can be
handled by AC independently, additional threads are created (see
Fig. 2).

In the last step, the threads are synchronised and compressed data
is stored in the output file. Since it is time consuming to write the
data to the out file, a pipeline is created for using DMA to speed up
the data storing. Thus, in the first step, each of the threads enters
the queue for the AC. One after another, byte-streams are accepted
by the AC and the corresponding threads are killed. When process-
ing of a byte-stream is terminated by AC, the data is passed to the
DMA. Because DMA does not use the CPU for writing, the CPU
can process the next byte-stream. In this way, the arithmetic cod-
ing and the data storing are performed simultaneously, reducing the
overall data compression time. However, because we cannot predict
which of the threads finishes the first, the order of the byte-streams
is stored in the output file, too. Nevertheless, the number of threads
is limited and the space needed to store the order of the byte-streams
is irrelevant in regards to the total file size.

5. RESULTS

The presented multithreading approach was tested against the
original method accessible at [18]. Both implementations were
done in C# under MS Windows 7 Profession. The time efficiency
of multithreading approach is demonstrated on five LAS files
that contain different number of points. Tests were performed on
computer system with Intel Core 2 Quad CPU Q6600 2.45 GHz, 4
GB of RAM. The results are presented in Table 1.

From the results we can see that the proposed multithreaded ap-
proach is, for over 70%, faster than the original approach. The CPU
utilization is increased from 24% to 94%. The original method has
not been designed for multi-core CPUs. Because of this, its utili-
sation cannot be higher than 1/N, where N is the number of CPU
cores. Thus, in our case (N=4) the maximal utilization is 25%.
When dealing with multi-core CPUs utilization, the distribution of
computational workload should be as equal as possible. With the
presented approach, the CPU utilization confirms that almost op-
timal workload distribution has been achieved. The difference be-

Figure 2: Multithread aproach for LiDAR data compression.



Table 1: Time efficiency of lossless LiDAR data compression algorithms
LAS File 1 LAS File 2 LAS File 3 LAS File 4 LAS File 5

Original file size (kB) 64.194 101.649 108.037 175.304 429.743
Compressed file size(kB) 9.887 9.289 14.339 20.250 40.455
Number of points 2.345.998 3.581.247 3.951.030 6.411.089 15.716.290
Original method 14.85 sec. 19.95 sec. 24.35 sec. 36.82 sec. 142.80 sec.
Multithreaded method 4.30 sec. 5.66 sec. 7.18 sec. 10.35 sec. 39.60 sec.
Time reduction 71.0% 71.6% 70.55% 71.9% 72.3 %

tween optimal utilisation and the achieved utilisation is due to the
additional calculations needed for synchronizations of threads and
thread scheduling. Because the thread synchronisation time is equal
regardless to the file size, slight increase in the time reduction can
be noticed when larger files are compressed. The only exception is
LAS File 3, where data density is particularly low and worse com-
pression ratio is achieved as well.

6. CONCLUSION

A new multithread compression schema for lossless LiDAR data
compression has been presented in this paper. The proposed ap-
proach exploits multi-core CPU and DMA of modern computer sys-
tems to speed up the data compression. It has been shown that in
these ways, the total compression time has considerably decreased,
due to the multithreading. When dealing with multiple threads, dif-
ferent threads share the same cash. Thus, by proper synchronisa-
tion, less time-costly data transfers are required [19]. Furthermore,
if one thread gets a lot of cache misses, other threads can still em-
ploy free computer resources that would otherwise be idle. In this
way the overall compression time has been reduced over 70%.

7. REFERENCES

[1] F. Ackermann, “Airborne laser scanning - present status and
future expectations,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 54(2-3), pp. 64–67, 1999.

[2] C. Briese, N. Pfeifer, and P. Dorninger, “Applications of
the robust interpolation for dtm determination,” International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 34, pp. 55–61, 2002.

[3] M. R. Belmont, “Application of non-uniform to uniform data
mapping to: Shallow angle lidar with the introduction of inde-
pendent variable techniques,” Signal Processing, vol. 87(10),
pp. 2461–2472, 2007.

[4] A. Wehr and U. Lohr, “Airborne laser scanning - an introduc-
tion and overview,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 54(2-3), pp. 68–82, 1999.

[5] D. F. Maune, Land development handbook (3th ed.), chapter
Aerial mapping and surveying, pp. 877–910, McGraw-Hill
Professional, 2008.

[6] H. Lee, K. C. Slatton, B. E. Roth, and W.P. Cropper,
“Prediction of forest canopy light interception using three-
dimensional airborne lidar data,” International Journal of Re-
mote Sensing, vol. 30(1), pp. 189–207, 2009.

[7] S. Coveney, A. S. Fotheringham, M. Charlton, and T. Mc-
Carthy, “Dual-scale validation of a medium-resolution coastal
dem with terrestrial lidar dsm and gps,” Computers & Geo-
sciences, vol. 36(4), pp. 489–499, 2010.

[8] J. L. Guerrero-Rascado, B. Ruiz, G. Chourdakis, S. A. Ray-
metrics, G. Georgoussis, and L. Alados-Arboledas, “One
year of water vapour raman lidar measurements at the andalu-
sian centre for environmental studies (ceama),” International
Journal of Remote Sensing, vol. 29(17-18), pp. 5437–5453,
2008.

[9] American Society for Photogrammetry and Remote Sens-
ing (ASPRS), “Las specification,” avaliable at
http://www.asprs.org/.

[10] G. Taubin and J. Rossignac, “Geometric compression through
topological surgery,” ACM Transactions on Graphics, vol.
17(2), pp. 84–115, 1998.

[11] D. Salomon, M. Giovanni, and D. Bryant, Data Compression:
The Complete Reference, Springer, 2009.

[12] R. Schnabel and R. Klein, “Octree-based point-cloud com-
pression,” in Eurographics Symposium on Point-Based
Graphics, M. Botsch and B. Chen, Eds. 2006, pp. 147–156,
Eurographics Association.

[13] Y. Huang, J. Peng, and C. C. J. Kuo, “A generic scheme for
progressive point cloud coding,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 14, pp. 440–453, 2008.

[14] B. Pradhan, S. Kumar, S. Mansor, A. R. Ramli, and A. R.
B. M. Sharif, “Light detection and ranging (lidar) data com-
pression,” KMITL Journal of Science and Technology, vol. 5,
pp. 515–526, 2005.

[15] B Žalik, “An efficient sweepline delaunay triangulation al-
gorithm,” Computer-Aided Design, vol. 37, pp. 1027–1038,
2005.

[16] M. Isenburg, “Lastools: converting, viewing, and
compressing lidar data in las format,” avaliable at:
http://www.cs.unc.edu/∼isenburg/lastools/.

[17] D. Mongus and B. Žalik, “Efficient method for lossless lidar
data compression,” International Journal of Remote Sensing,
vol. 32(9), pp. 2507 – 2518, 2011.

[18] D. Mongus and B. Žalik, “Las compression algorithm,” avali-
able at: http://gemma.uni-mb.si/lascompression/.

[19] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming, Morgan Kaufmann, 2008.

ABOUT THE AUTHORS

Domen Mongus is a Ph.D. student at University of Mari-
bor, Faculty of Electrical Engineering and Computer Sci-
ence,Department of computer science. His contact email is
domen.mongus@uni-mb.si.



Ph.D. Denis Špelič is a researcher at University of Mari-
bor, Faculty of Electrical Engineering and Computer Sci-
ence,Department of computer science. His contact email is
denis.spelic@uni-mb.si.

Borut Žalik is a professor at University of Maribor, Faculty of Elec-
trical Engineering and Computer Science,Department of computer
science. His contact email is zalik@uni-mb.si.


