
Automatic Logo Removal for Semitransparent and Animated Logos

Erofeev Mikhail, Dmitriy Vatolin

Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia

{merofeev, dmitriy}@graphics.cs.msu.ru

Abstract

Adding a visual logo to a video sequence is a popular method of

identifying the owner of that sequence. In this paper we propose a

fully automatic method for removing opaque, semitransparent and

animated logotypes from video sequences.

Keywords: Logotype removal, video processing.

1. INTRODUCTION

In this paper we consider logo removal as a process of automatic

detection of a logotype’s shape and position in each frame of the

video, followed by complete removal of that logotype from the

video. The most common types of logos are the following:

1. Opaque static logo—the logo image is overlaid on all

video frames

2. Semitransparent static logo—the source frame is alpha

blended with the logo image

3. Animated logo—the logo image changes with time, but

usually this change is periodic

The proposed method allows for removal of all these types of

logos.

2. RELATED WORK

Several related works address TV logos. These works can be

classified into two categories.

2.1 Logo detection using a logo database

Methods in this group use previously collected information about

a set of logos to detect which one is shown on the screen.

In [3], the authors propose a real-time approach to detecting

opaque, semitransparent and partially animated logos. They also

propose using average gradient values to detect semitransparent

logos. Our approach uses average gradient values to estimate the

position of a static logo. In [1], the authors reported good

detection results for animated logos when using the unified logo

boundary representation.

Nevertheless these approaches cannot be applied in the case of

arbitrary logotypes, because of the need to build a database
containing all existing logos.

2.2 Logo detection and removal with
assumptions

The second group of works solves the problem of automatically

removing an arbitrary logotype from a video sequence. The

authors in these cases make some additional assumptions about

the logo (for example, the logotype doesn’t change its color or

shape) to permit detection of the logo in the video data.

In [2], the authors propose methods for detecting and removing

semitransparent and opaque logos. They assumed that the video

content—except for the logo—changes over time. To exploit

these temporal variations for logo detection, the sequence is

divided into segments with static content. A similar concept is

used in our approach to acquire a high-contrast dispersion map.

(a) Source dispersion

(b) Interpolated dispersion

(c) Estimated transparency
map

(d) The first estimate of the

logo mask

(e) Logo mask after the first
iteration

(f) Final logo mask

Figure 1: Main steps of building logo mask

In [4], the authors use a multi-stage approach to logo detection.

First, simple binary segmentation is performed, thereby filtering

out a large portion of the pixels that belong to moving objects and

to the background. The second step involves a Bayesian classifier

and neural networks to detect the “coarse” logo. The third step

consists of some post-processing to refine the logo mask.

Both of these approaches fail to remove animated logos.

3. PROPOSED APPROACH

Our method consists of two main steps: logo detection and logo

removal. For the first step we determine the exact position of the

logo and its binary mask. Also for semitransparent logos, some

additional information about their color and transparency is

collected. The second step uses the data from the previous step to

completely remove the logo from the image

3.1 Logo detection

Our method treats static and animated logos in fundamentally

different ways. Static opaque and static semitransparent logos are

handled in the same way. We discuss the cases of static logos and

animated logos separately.

Figure 2: Algorithm of building logo mask

3.1.1 Static logo

For static logos, the frame containing the logo can be considered a
source frame that is alpha blended with logo image. ���� � �1 � ��	���
 	��

Here I(t) is the frame containing the logo, F(t) is the source frame

and α is the transparency map. For opaque logos, the transparency

map consists only of the value 1 for points that are part of the logo
and the value 0 for all other points.

The first step in logo detection is estimating the logo’s position.

For this purpose we calculate a gradient field for each frame and

then compute the average gradient map for several frames.

��� � 1��‖�I����‖�
���

Here k is a time scaling factor (k=20 in our experiments); such

time scaling allows us to dismiss the edges of slowly moving

objects. For each G(i) we determine a set bounding boxes

containing areas with high values (the value should be higher than

that of 80% of the other G(i) points). If a bounding box doesn’t

change size and position for several instances of G(i), that

bounding box is assumed to contain a logo image.

All computations at this point are carried out inside the selected

bounding box. The last step of logo detection is intended to build

the final binary mask of the logotype, its transparency map and its

color. We collect a set R of n (n=200) logo region images that are

as different as possible. For each video frame we cut out a logo

region r. If R contains less than n images, r is inserted into the set.

If R already has n images and the following condition is true min��∈�‖ � !‖ " min�#∈�,�%∈�.�#'�%‖ � � (‖,

then r is inserted into R and the set of the most similar regions Rs

is constructed. Then we randomly select one region from the set

Rs and remove it from R.)* � argmin�# � min�%∈�,�#'�%‖ � � (‖�

(a) Period-quality measure for each block

(blocks with higher quality have brighter color)

(b) Distances function for block containing an animated logo

(c) Distances function for block containing no logo

Figure 3: Example of quality and distance functions

Interpolation of
DF and EF

Building new
logo transparency

and alpha map

Building new
logo mask

The first estimate of the logo mask

For all images in R, dispersion and mathematical expectation in

the time domain are computed (an example of dispersion is shown

in fig. 1(a)).

Now we make assumption that dispersion and mathematical

expectation of the whole video are equal to dispersion and

mathematical expectation of R. .� � .)	/� � /)

Next, the iterative process of building the logo mask is carried

out. Fig. 2 shows the flowchart for this algorithm. The first

estimate of the logo mask is the rectangle covering the entire logo

region, except for a single-pixel-wide border around it, as shown

in fig. 1(d). Taking into account only points not covered by the

logo mask, we interpolate other points in the dispersion map by

solving Laplace's equation. ∆.	 � 0

The solution DF of this equation is the interpolated dispersion (an

example of which is shown in fig. 1(b)) behind the logotype. EF is

interpolated in the same way.

We can compute a transparency map (an example of which is

shown in fig. 1(c)) and color for each logo point. .���� � .2�1 � ��	���
 ��3	EI��� � E2�1 � ��	���
 ��3	
� � 1 �5.����.	���	
� � /���� � �1 � ��/	���� 	

Using simple binary segmentation with a threshold of � " 0.2, we

can more accurately estimate the logo mask (an example of which

is shown in fig. 1(e)). The new mask is used to compute a new

transparency and color map. In most cases three iterations of this

process are enough to obtain an accurate logo mask (an example

of a final mask is shown in fig. 1(f)).

3.1.2 Animated logo

Most animated logos change their color, shape and position

periodically. The first step of our approach for animated logo

detection is estimation of this period. To this end we divide the

frame into regular blocks 7�,89 (where i and j are spatial

coordinates and t is the frame number) that are 16×16 pixels each.

For each block we estimate its period of change :�,8 and period-

quality measure ;�,8.

:�,8 � argmin9 �<7�,89 � 7�,89�<9�
	

;�,8 � =min9 �<7�,89 � 7�,89�<9�
>?�

To save time our method doesn’t compute these values directly.

We compute the function of distances between blocks for the first

frame and a subsequent frame. @�,8��� � A7�,8� � 7�,89 A

We can assume that <7�,89# � 7�,89%< B C@�,8���� � @�,8��(�C.
Using this assumption, :�,8 and ;�,8 can be computed much faster.

Fig. 3(a) shows an example of ;�,8 for each block. Fig. 3(b)

illustrates a distance function for the block containing an animated

logotype. This function changes periodically, and the block has a

large period-quality measure. Fig. 3(c) shows another distance

function computed for a block containing no logo. This function

changes chaotically, and its corresponding block has a low period-

quality measure. The block 7�,8 with the highest ;�,8 is assumed to

contain an animated logo with a period of change :�,8 .

When the period of change is known, we consider frame sets D����. D���� � E��:�
 ��|� ∈ GH

(a) Source logo region

(b) Spatial interpolation

(c) Logo subtraction

(d) Motion estimation

Figure 4: Source region and examples of several methods of

reconstructing frames

(a) Source logo region

(b) Reconstructed

(c) Estimated logo mask

(d) Estimated logo mask

Figure 5: Source and reconstructed regions from video sequence

with animated logo. (c-d) masks for different phases of animated

logo

 Here T is the estimated period of change. Each D� can be

regarded as a video sequence containing a static logo, and the

methods discussed in the previous section can be used for its
detection.

3.2 Logo removal

Logo removal is the last step of the proposed approach. We

implemented and tested several methods of reconstructing frames

behind the logo.

3.2.1 Spatial interpolation

This method uses only the binary logo mask. We solve Laplace's

equation to interpolate points covered by the logo mask. This

method yields good results when applied to smooth areas, but it

fails to when applied to textured areas. An example of the results

is shown in fig. 4(b).

3.2.2 Logo subtraction

This method can deal only with semitransparent logotypes and

uses the transparency map and logo color data collected in the

previous step. To compute the frame without the logo, the

following formula is used.

	��� � ���� � ��1 � �

Fig. 4(c) shows an image obtained using this method.

3.2.3 Motion estimation

This method uses the logo’s binary mask and motion information

from previous frames. The method can deal with any type of logo.
Fig. 4(d) shows results.

4. RESULTS

We tested our methods on several video sequences containing

different types of logos. The average frame rate for the logo

detection step for HD video was 3, and the average frame rate for

the removal step was 4. Fig. 4-5 show example frames for which

our approach removed the logo.

Objective comparison of our approach with those of several

publicly available logo removal tools was performed. A video

sequence without any logotypes was taken as the ground-truth

sequence. Opaque and semitransparent logos were added to this

sequence. Each tool was used to remove the logo from the test

sequences, and the PSNR was measured relative to the ground-

truth sequence and its output. Results for this comparison are

shown in the table below. Fig. 6 shows output of these tools.

Unfortunately we cannot provide any comparison for animated

logos because of the lack of a publicly available tool for

automatically removing such logotypes.

 As we can see in the table above our approach has the best PSNR

value among publicly available tools and requires only video with

logotype as input. Fig. 6 also shows that output of our method

contains less visually noticeable distortions then output of other

methods.

In this paper we have presented logo detection and removal

techniques for several types of logo. For static logos we analyze

dispersion map of the logo region to carry out logo mask. For

animated logos we analyze periodical changes in the input video

sequence to determine logo region. Also our animated logo

detection method is the first animated logo detection method that

doesn’t require additional source data.

5. ACKNOWLEDGEMENTS

This research was partially supported by grant 10-01-00697-a

from the Russian Foundation for Basic Research.

6. REFERENCES

[1] E. Esen, M. Soysal,T. Ateş, A. Saracoğlu and A. Alatan. “A

Fast Method for Animated TV Logo Detection”. Content-
Based Multimedia Indexing, 2008. CBMI 2008.

[2] K. Meisinger, T. Troeger,M. Zeller, and A. Kaup,

“Automatic TV logo removal using statistical based logo

detection and frequency selective inpainting,” presented at

the Eur. Signal Processing Conf., Sep. 2005.

[3] A. dos Santos and H. Kim. “Real-Time Opaque and Semi-

Transparent TV Logos Detection”. In WACV, 2007.

[4] W. Q. Yan, J. Wang, and M. S. Kankanhalli, “Automatic

Video Logo Detection and Removal” Multimedia Systems,
10(5), pp. 379-391, July 2005.

[5] http://wiki.atrox.at/index.php/TV_LogoRemove

[6] http://www.videohelp.com/tools/Virtualdub_Logoaway_filte
r

[7] http://neuron2.net/delogo132/delogo.html

(a) Source logo region

(b) Fuzzy Logo Filter

(c) Logoaway

(d) DeLogo

(e) Our approach

Figure 6: Comparison of logo removal tools

Filter name

Required

additional

user input

Opaque

logo PSNR

(dB)

Semitransparent

logo PSNR (dB)

Fuzzy Logo

Filter [5]
No 36.29 36.30

Logoaway

[6]

Logo

bounding

box

36.35 36.36

DeLogo [7] Logo mask 38.64 35.80

Our

approach
No 39.38 39.44

