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Abstract 

In this short paper we describe simple approach to loosely 

compress the vertex data for ray tracing large triangular models on 

the GPU. The disadvantage of the GPU is limited memory 

capacity. The advantage of the GPU is high performance 

computation. Sometimes it is hard to load large models to the 

GPU and we suggest compressing the vertices that form 3D 

models and acceleration data structure using 16bit representations 

instead of 32bit floats. At the same time the aggregate vertex 

precision varies between 22 and 24 bits and the amount of cracks 

is minimized. The advantages of NVIDIA CUDA platform are 

used to implement our approach efficiently. 
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1. INTRODUCTION 

Scenes for feature film rendering and CAD/medicine visualization 

may have large geometric complexity and can easily contain ten 

or hundred million polygons. Demands for greater photorealism, 

more realistic materials, complex lighting and global illumination 

push computational bounds which often results in long render 

times and more research in data compression methods.  

Complex lighting can be implemented with ray tracing rather 

simply. However efficient ray tracing implementation on the GPU 

is still a challenge. The GPUs such as NVIDIA GTX480 and 

GTX580 have around 1.5Tflops of compute power and only 

1.5GB of main memory. Our challenge is to load a model with 

several ten million triangles to these GPUs. 

One of the most popular 3D model representations is triangular 

representation which encodes the surface of the 3D model. One of 

the most popular acceleration structures for ray tracing is the 

Bounding Volume Hierarchy (BVH) of Axis Aligned Bounding 

Boxes (AABBs) [4].  

In this paper we present a simple and efficient method for 

compact vertex coordinates and BVH storage which is dedicated 

for convenient ray tracing queries on modern GPU (our geometry 

compression is optimized for GPU ray tracing target unlike 

general compressed geometry/mesh representations by Deering 

and Chow [8] [9]). We spend an average of 15.5bytes per triangle 

for vertex coordinate and BVH data storage. This allows spending 

750-950MB (for vertex coordinates and BVH) of GPU memory to 

ray trace 50-60 million triangle models (see Figure 1) which are 

common for wide range of CAD visualization tasks. Several 

features of NVIDIA CUDA platform [7] which are implemented 

in hardware are used to simplify and accelerate our data 

decompression method. Our basic approach is quantization of 

vertex coordinates in the limited space of bounding box. 

2. ALGORITHM 

Every node of the BVH contains the AABB and the link to the 

pair of children nodes (the BVH leaf contains the link to the 

primitives).  

 

 
Figure 1: The scene contains 58M triangles and is rendered on 

GTX 480 with 1.5GB memory: 3 area light sources, specular or 

diffuse reflections (the maximum ray path length is 3). The image 

is rendered progressively at 1024x768 (every image pass takes 

130ms to render). 

As the rays are usually non-coherent this may result in a non-

coherent memory access for the threads within the same CUDA 

warp. When the rays processed by the same CUDA warp access 

non-coherent data the best way to improve the memory access 

time is to access the data packed in float4 or int4 elements (basic 

16byte CUDA types). The memory access time is further 

improved when we use CUDA textures [7]:  

    float4 elem = tex1Dfetch(texAABBdata, addr); 

BVH data layout and fetching. We use the ray tracer 

implementation similar to the one by Aila and Laine [1]. The ray 

traverses through the binary BVH where two sibling nodes are 

stored together (the top root node is not stored; see Figure 2, left 

image). These 2 sibling nodes are sorted during ray traversal and 

the ray prefers to descend to the closest one until the leaf node is 

reached. Each AABB needs 6 words to encode the box, two 

sibling AABBs need 12 words to encode two boxes. During the 

ray traversal we fetch these 12 words using three float4 texture 

fetches (see Figure 2, array Aabbs) and then consider them as 2 

boxes inside the “ray-pair of boxes” intersection. 

Vertex data layout and fetching. An input triangle mesh is 

converted to a quadrilateral mesh using triangle connectivity 

information [3]. We process triangles one by one. Each triangle is 

connected to some neighboring triangle if they share a common 

edge and have the same material. From multiple candidates we 

select a pair of connected triangles that form a quad with the 

smallest perimeter. A quad mesh has 1.5 times less connectivity 

information (four vertex links per quad) than corresponding 

triangle mesh (six vertex links per two triangles). 

Every new scene primitive has 4 vertices and one shared edge. 

Such a quad is stored as four consecutive 3D vertices (see Figure 

2, array Primitives). 



  

Figure 2: Left: hierarchical view of the BVH without root; all the sibling nodes are stored together. Right: memory representation of the 

BVH and the list of primitives. Each i-th Aabb from Boxes array and i-th word from NodeInfo array forms the BVH node. The inner node 

(32nd bit of NodeInfo[i] equal to zero) refers to the pair of children nodes. The leaf node (green rectangle) has 32nd bit of NodeInfo[i] equal 

to one and refers to the block of five 4byte words of array LeafDecodeInfo. The first 4 words encode leaf decode matrix offset and scale, 

the fifth word is casted to integer value which refers to the block of several primitives united by this leaf.  

 
Figure 3: Geometry Quantization. The BVH leaf is enclosed into 

a bounding cube and the vertex coordinates are quantized within 

the range -215..215. 

Vertex data compression. In the BVH generated using Surface 

Area Heuristic (SAH) [6] the leaves are well separated from each 

other. We assume that leaf extents are small enough compared to 

the whole mesh. All the quad vertices within the leaf are 

embedded into a 16-bit cube (coordinates ranging from -215 to 215) 

and quantized (see Figure 3) using Mencode matrix (see the code 

for quad vertex compression in the Listing 1). We then linearize 

all quad vertices eliminating the connectivity information and 

vertex link indirection. Each quad now takes 24 bytes (i.e. 12 

bytes/triangle). Decode information is stored per leaf: float3 

Center and float maxwidth components of Mdecode matrix are 

stored in the first 4 words of the block allocated for this leaf in the 

array LeafDecodeInfo (see Figure 2).   

Vertex decompression (decoding) is very fast. We use CUDA 

texture fetch whose mode is set to 

cudaReadModeNormalizedFloat: 
// Bind the array of linearized quads to texQuad. 

texture<short4,1,cudaReadModeNormalizedFloat> texQuads; 

cudaBindTexture(0, texQuads, Primitives, numPrims * sizeof(QUAD_COMPRESSED)); 

 

// Read two connected triangles (shared edge is used in intersection test to  

// reduce the number of cross/dot products 

float3 A, B, C, D; { 

  float4 q1 = tex1Dfetch(texQuads, 3 * quadIdx); 

  float4 q2 = tex1Dfetch(texQuads, 3 * quadIdx + 1); 

  float4 q3 = tex1Dfetch(texQuads, 3 * quadIdx + 2); 

  A = make_float3(q1.x, q1.y, q1.z); 

  B = make_float3(q1.w, q2.x, q2.y); 

  C = make_float3(q2.z, q2.w, q3.x); 

  D = make_float3(q3.y, q3.z, q3.w); 

} 

 

With this normalized fetch mode the float values are mapped from 

original short value range -215..215 to the values in the range -1..1.  

The rays are specified in the world space. When we intersect them 

with the BVH-leaf they are transformed to the local leaf space 

(i.e. -1..1) using the Center and maxwidth components of the 

Mdecode which are stored per leaf in the LeafDecodeInfo array.  

16-bit quantization (16bit vertex precision within the leaf) can 

encode 248 voxels in a localized BVH-leaf 3D space (assumed to 

be relatively small compared to the world space). The amount of 

the leaves which can be placed in the row along any of the scene 

dimensions can determine the final precision of this vertex 

representation. If we can place 100-250 BVH-leaves along x, y or 

z scene dimension then the vertex precision would be 23-24bits in 

the world space. This precision depends on the size of the AABB 

of the average BVH leaf compared to the whole scene AABB. 

Matrix4 CompressVertices(QUAD_COMPRESSED * outLeafQuads, QUAD * inLeafQuads,  

                         int numQuads) 

{ 

  AABB SBox = make_aabb(); 

  for(int i = 0; i < numQuads; i++) { 

    Extend(SBox, inLeafQuads[i].A); 

    Extend(SBox, inLeafQuads[i].B); 

    Extend(SBox, inLeafQuads[i].C); 

    Extend(SBox, inLeafQuads[i].D); 

  } 

 

  // Scale data 

  float3 Center = (SBox.Min + SBox.Max) * 0.5f; 

  float3 Size = SBox.Max - SBox.Min; 

  float maxwidth = max(Size.x, max(Size.y, Size.z)); 

 

  // geometry is stored in a 16bit quantization 

  // space in a cube [-32K,-32K,32K] .. [32K,32K,32K] with a center at [0,0,0] 

  Matrix4 Mencode = scale(65534.0f / maxwidth) *  

                    translate(-Center.x, -Center.y, -Center.z); 

 

  // used to get the original position of object during ray traversal 

  Matrix4 Mdecode = translate(Center.x, Center.y, Center.z) * scale(maxwidth); 

 

  // optimized vertex coordinates  

  // (shift and scale the vertices to the local compression space) 

  for(int i = 0; i < numQuads; i++) { 

    outLeafQuads[i].A = make_short3(transformPoint(Mencode, inLeafQuads[i].A)); 

    outLeafQuads[i].B = make_short3(transformPoint(Mencode, inLeafQuads[i].B)); 

    outLeafQuads[i].C = make_short3(transformPoint(Mencode, inLeafQuads[i].C)); 

    outLeafQuads[i].D = make_short3(transformPoint(Mencode, inLeafQuads[i].D)); 

  } 

 

  return Mdecode; 

} 

 

Listing 1: Code fragment for compressing quad vertices of the 

BVH leaf. 

0 1

2 3 6 7
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Figure 4: Dragon, PowerPlant and Lucy rendered with 3 light sources and enabled compression mode. No any visible artifacts/cracks. 

We have tested this simple vertex coordinate compression with a 

variety of large 3D models (CAD scenes, laser scanned objects, 

etc.) and have not observed any cracks between the leaves of the 

leaves of the BVH.  

Although, the cracks are possible for small models which contain 

the primitives with large extents. Example: two primitives are 

connected in the original mesh. When the BVH is generated the 

primitives fall into different leaves. These leaves have 

independent bounding cubes (which are used for quantization, see 

Figure 3). For large extent primitives (compared to the scene 

extent) this can be the reason of visible cracks between the leaves 

of the BVH. 

In our scenes we can mix the models which have 32-bit vertex 

precision or reduced vertex precision.  

BVH data compression. For large models which contain several 

tens of millions of polygons we generate the SAH-based BVHs 

with up to 16 quads (equal to 32 triangles) per leaf. These “fat” 

leaves reduce the BVH size (the arrays Aabbs, NodeInfo and 

LeafDecodeInfo are smaller if the leaves have more primitives). 

Speculative ray traversal [1] has more effect (compared to non-

speculative) for the BVHs with “fat” primitives.  

We also apply a 16bit quantization to the plane coordinates of the 

AABB. Each of the 6 plane coordinates is stored in a 2byte word. 

This encoding is done similarly to the vertex data encoding: all 

the world-space bounding boxes of the BVH-leaves are embedded 

into a global 16bit bounding cube (similar to the one on the Figure 

3). All the BVH bounding boxes are stored using short data type. 

Ray traversal decodes the AABBs using the same normalized 

texture fetch mode which converts the data stored in short type to 

the float type. 

With this quantization the short representation bounding boxes 

can be slightly extended compared to the boxes computed 

originally with float type. This extension may result in a few more 

ray-primitive intersection tests during the course of ray traversal. 

3. RESULTS 

We test the implementation of our compression method using 

CUDA 3.2, 64bit WindowsXP and GTX480 card (with 1.5GB of 

memory where only 1.3GB can be allocated with cudaMalloc). 

The BVH is built offline using the Surface Area Heuristic (SAH) 

[6]. All the scenes are rendered with 1024x768 images resolution 

with 3 area light sources and 3 bounce rays. 

Figure 1 represents the 58M triangle scene (a PowerPlant with 

13M triangles, a Lucy model with 28M triangles, a Thai model 

with 10M triangles and a Dragon model with 7M triangles). In a 

compressed mode we spend 900MB for BVH storage (max 16 

quads / leaf) and vertex data storage (which result in 15.5 bytes 

per triangle storage). Without this kind of memory optimization 

this kind of model could consume up to 2.7GB of storage which 

can’t fit into GTX480 memory.  

 non-compressed 

(4 triangles / BVH 

leaf) 

compressed 

(quads + quantization 

+ 16quads/BVH leaf) 

Storage, 

MB 

Render, 

ms 

Storage, 

MB 

Render, 

ms 

Dragon,7M triangles 420 45 109 51 

Thai, 10M triangles 600 47 155 55 

PowerPlant, 13M 

triangles 

780 97 201 110 

Lucy, 28M triangles 1680 n/a 434 65 

All together, 58M 

triangles 

3480 n/a 900 130 

Table 1: Non-compressed vs. compressed stats. 

In Table 1 we present comparison statistic for two modes: non-

compressed (36 bytes for vertex data storage per triangle, 28 bytes 

for AABB storage, 4 triangles per BVH leaf) and compressed 

(grouping into quads, quantization and 16 quads per BVH leaf). 

In the non-compressed mode each triangle requires up to 60 bytes 

to store the vertices and acceleration structure. Because of this we 

can’t ray trace the models larger than 13M triangles on a 1.5GB 

graphics card.  

With a maximum of 32 quads per primitive we can reduce the 

storage by 5% and decrease the ray tracing time by another 10%. 

With a compression mode enabled we have 3.9x compression rate 

for the data storage and 10% slower ray tracing (if we compare 

render timings for PowerPlant and Dragon which both fit into 

GPU for both compressed/non-compressed modes). However, 

compressed-mode allows loading the model with 60-70M 

triangles to the GPU. 

When compression mode is switched the amount of data to be 

accessed is reduced and there should be less influence of data 

access BW on the ray tracing time. But at the same time we have 

increased the number of primitives per BVH leaf from 2 quads (4 

triangles) per leaf till 16 quads per leaf: the average number of 

ray-primitive intersection tests per ray was increased by 90%. 

Instead of 2x slowdown we got 10% slowdown for models that fit 

into memory (for both modes) because of the more utilization of 

GPU computation units per memory access units. This simple 



experiment confirms that for GPU it can be better to store less and 

compute/recomputed more. 

Potential improvement. The advantage of our approach is its 

simplicity compared to the hierarchical AABB compression [2], 

[5] which is harder to implement on GPU. Though, in the future 

we would like to experiment with such compression methods as 

well as with the larger primitive (not quad, but a triangle fan or 

“cluster” [3]).  

Another interesting direction of future work would be to compress 

the dataset on the GPU as well as acceleration structure generation 

on the GPU.  

4. CONCLUSION 

In this paper we have presented a simple method to compress the 

vertex coordinates dataset and the bounding volume hierarchy by 

almost 4x and keep efficient ray tracing at the same time. This 

method allows rendering 4x larger models on the same GPU at 

low implementation cost. 
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