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Abstract 

This paper presents Direct Volume Rendering (DVR) 

improvement strategies, which provide new opportunities for 

scientific and medical visualization which are not available in due 

measure in analogues: 1) multi-volume rendering in a single space 

of up to 3 volumetric datasets determined in different coordinate 

systems and having sizes as big as up to 512x512x512 16-bit 

values; 2) performing the above process in real time on a middle 

class GPU, e. g. nVidia GeForce GTS 250 512 MB; 3) a custom 

bounding mesh for more accurate selection of the desired region in 

addition to the clipping bounding box; 4) simultaneous usage of a 

number of visualization techniques including the shaded Direct 

Volume Rendering via the 1D- or 2D- transfer functions, multiple 

semi-transparent discrete iso-surfaces visualization, MIP, and 

MIDA. The paper discusses how the new properties affect the 

implementation of the DVR. In the DVR implementation we use 

such optimization strategies as the early ray termination and the 

empty space skipping. The clipping ability is also used as the 

empty space skipping approach to the rendering performance 

improvement. We use the random ray start position generation 

and the further frame accumulation in order to reduce the rendering 

artifacts. The rendering quality can be also improved by the on-

the-fly tri-cubic filtering during the rendering process. Our 

framework supports 4 different stereoscopic visualization modes. 

Finally we outline the visualization performance in terms of the 

frame rates for different visualization techniques on different 

graphic cards.   

Keywords: GPGPU, ray casting, direct volume rendering, medical 

imaging, empty space skipping, section by arbitrary mesh. 

1. INTRODUCTION 

In scientific visualization it is often necessary to deal with some 

volumetric regular scalar datasets. These data may be obtained by 

some numerical simulation or via the scanning equipment such as 

tomographs. The output data of the CT scan is a series of the 

slices, i.e. two-dimensional scalar arrays of 16-bit integer values. 

The stack of such slices can be interpreted as a volumetric dataset 

which can be visualized as a 3D object.  

Since the 90s, the Direct Volume Rendering shows itself as an 

efficient tool for the visual analysis of volumetric datasets [1-4]. 

Different established approaches [4] make possible the 

implementation of the real-time volume rendering by using the 

parallel and high-performance computations on the GPU. The 

recent progress in GPGPU computations makes the real-time 

multi-volume rendering possible [1]. In this paper we make a 

review of general details of our Ray Casting implementation, 

which allows for the performance and quality improvement of the 

available visualization methods. 

1.1 The framework development motivation 

There was a need in a volumetric visualization of the molecular 

dynamic simulation of the electron bubble transport process. 

There was a number of different volumetric datasets being 

obtained during this simulation, representing different scalar and 

vector fields. These datasets should be visualized together, in a 

single space.  

  

Figure 1: Features that we have implemented in our visualization 

software: the multi-volume rendering (left); volumetric clipping via 

the custom polygonal mesh (right). 

However, there was no scientific visualization software available, 

which could satisfy our needs in the visual analysis of the 

scientific multi-volume time-varying volumetric datasets we had.  

We wanted to be able to add several desired specific features in 

our own visualization framework. For instance, the interactive 

volumetric section via the arbitrary polygonal mesh can be 

efficiently used for the interactive and suitable selection of the 

region of interest, and we have not found any solutions with this 

feature. There is no multi-volume rendering software available as 

well, so its development is still in the research domain. Below we 

make a review of some significant visualization software solutions 

we have encountered. 

The Voreen (http://www.voreen.org/) is an open source volume 

rendering engine, which can be nicely used for some scientific 

datasets visualization and the rendering quality is good enough. 

But when dealing with some big dataset (e.g. 512³ cells) it appears 

to be hardly a real-time visualization. Moreover, there is no 

support for the multi-volume datasets rendering if we want to 

render several datasets together in one space.  

http://www.voreen.org/


The OsiriX (http://osirix-viewer.com) viewer is designed for the 

medical staff and has a lot of features, but it is the MacOs-only 

software. And while it is the medical imaging software, it can be 

hardly used for the scientific data visualization, because the user 

may want to obtain some specific data visual representation.  

The Fovia’s (http://fovia.com) CPU-based Ray Casting efficiency 

shows that even such GPU-suitable algorithms, like the Ray 

Casting, are still may be implemented fully on the CPU with the 

same or better results. However, while the graphical cards’ 

performance, availability and architecture flexibility increases, the 

CPU-based efficient Ray Casting implementation is a very 

difficult task. Besides, the Fovia has no the desired features like 

multi-volume rendering and polygonal mesh based volumetric 

clipping. 

2. METHODS AND ALGORITHMS 

In this section we make a brief inspection of the Ray Casting and 

some other algorithms we have implemented in our system. All of 

these algorithms and are implemented as the GLSL shaders. 

2.1 Rendering methods 

Due to the high flexibility of the Ray Casting (RC) method there is 

a huge amount of different possible visualization techniques. The 

RC algorithm calculates each pixel of the image by generating 

(casting) rays on the screen plane and traversing them towards the 

observer viewing direction. Each of the RC-based rendering 

algorithms takes the ray start position and its direction as the 

input parameters, and the pixel color as the algorithm output.  

There are six rendering techniques in our framework and each of 

them supports multi-volume rendering, i.e. these algorithms can 

handle several volumetric datasets, which are arbitrary located in 

the world space. The dataset’s location is determined by the 

transformation 3x4 matrix. In addition to the volume’s position 

and orientation, this matrix also defines the spacing by x, y and z 

components, which allows for the proper volume scaling. So to 

perform a sampling from the arbitrary located dataset we multiply 

the sampling point by this matrix, so we will get the sampling 

point in the volume’s local coordinate system.  

In order to perform the GPU-based Ray Casting, we use GLSL 

shaders to calculate the screen plane’s pixel colors, like it is done 

in the Voreen framework. Each of the rendering methods in our 

framework is defined by some GLSL fragment shader program, i.e. 

a text file with the GLSL code. These methods differ from each 

other, but they uniformly handle all visualization parameters, e.g. 

the observer position, transfer functions, iso-surfaces, anaglyph 

matrix, etc. So it is easy for us to add new RC-based rendering 

techniques in our visualization framework. 

2.1.1 Maximum Intensity Projection (MIP) 

The Maximum Intensity Projection (MIP) is one of the most 

usable volumetric visualization modes in the medical imaging [3]. 

It is easy for clinicians to interpret an MIP image of blood vessels.  

  

Figure 2: MIP images of the brain vessels (left) and the dental 

datasets. 

The maximal intensities of the volumetric dataset are projected 

onto the screen plane. Usually the projected intensity determines 

the pixel’s color in the gray-scaled manner (Figure 2).  It medical 

imaging there is a window/level concept.  The window is 

represented by two scalar values – the window width and window 

center.  

2.1.2 The shaded Direct Volume Rendering (sDVR) 

The shaded DVR technique is also used in a medical exam, but its 

usage is more limited [2]. In contrast to the MIP technique here 

we can use the early ray termination approach, which 

considerably improves the rendering performance without any 

image visible changes. This termination can be done because of the 

DVR algorithm nature – while traversing throw the volume data, 

the ray accumulates color and opacity, i.e. the optical properties, 

defined by the transfer function (TF). While the opacity increases, 

the contribution to the final pixel’s color decreases. This opacity 

accumulation is commonly used to visualize the data as a realistic 

volumetric object. 

  

Figure 3: The scientific (left) and medical (right) data 

visualization by the DVR and sDVR techniques. 

2.1.3 Semi-transparent iso-surfaces 

Semi-transparent iso-surfaces are usually used for the scientific 

data visualization, because these surfaces are easier to interpret 

when examining some new phenomena. One of the main 

advantages of this method over the DVR’s one is a surface’s 

visualization high quality: here we can search for more exact 

intersection with the surface, a so called Hitpoint Refinement [5], 

while in DVR there are no surfaces. There are opaque regions in 

DVR, but theirs accurate visualization requires more difficult 

algorithm, and its laboriousness considerably reduces the 

performance of the GPU-implementation.  

http://osirix-viewer.com/
http://fovia.com/


  

Figure 4: Semi-transparent iso-surfaces via the Ray Casting 

algorithm. The CT tooth dataset (left) and the simulated electron 

bubble transport process (right). 

This method searches for ray’s intersections with the iso-surfaces. 

When the ray passes across the iso-value, we calculate a more 

exact intersection point determined by the ray positions and 

sampled values on the current and previous steps. The linear 

interpolation is enough to obtain a desired result.  

2.2 Optimization strategies 

2.2.1 Early ray termination 

The Early ray termination technique is a common optimization 

strategy for a Ray Casting algorithm. It is possible to terminate 

the RC algorithm for each individual ray if the accumulated 

opaqueness is close to 1. However, in rendering techniques like the 

MIP it is necessary to browse the whole ray path until leaving the 

bounding volume.  

2.2.2 Empty space sk ipping via the volumetric clipping 

The custom bounding polygonal mesh can be used either for the 

rendering acceleration [5] or for the data clipping, as an alternative 

to the dataset’s segmentation. We use OpenGL frame buffers to 

store the distances from the viewpoint to the mesh front and back 

faces. The buffers may contain up to 4 ray path segments (in [5] 

there is only one segment), so that the mesh is not required to be 

convex. Of course, before using these buffers we should fill them 

with some relevant data. To do it we draw the bounding mesh by 

calling common OpenGL instructions and perform rendering into 

the texture. We use a specific GLSL shader program to fill pixels 

with the relevant data instead of the standard OpenGL coloring. 

The program calculates the current distance between the observer 

and the fragment position. The only varying parameter is the 

fragment position, i.e. the point on the mesh surface. After the 

buffers are filled with the relevant distances, the Ray Casting may 

be performed (Figure 5). For each ray it is known, what segments 

of the ray path should be traversed. 

2.3 Rendering artifacts reduction 

Because of the finite steps’ number the ray may skip some 

meaningful features in the dataset, even if the ray step is much less 

than the voxel’s size. As a result the ‘wood-like’ image artifacts 

may appear. This wood-likeness appears because each ray starts 

from the same plane (e.g. from the bounding box face). This 

artifacts’ regularity can be removed by randomizat ion of the ray 

start positions. The final image will contain ‘noisy’ artifacts 

instead of ‘regular’ ones. If a user does not change the viewpoint 

and other visualization settings, these random frames can be 

accumulated by such a way that a user will see an average image 

that contains no noise (Figure 8). 

 

Figure 5: The illustration of the volumetric clipping algorithm. 

The yellow regions of the screen plane identify pixels, where are 

only one path segment inside the bounding mesh. In the white 

region there are two path segments for the rays in the Ray Casting 

algorithm. 

  

Figure 6: The source dataset (left) and its acceleration structure 

(right) visualization. Visible ‘bricks’ identify regions of interest 

that contain some visible features. 

  

Figure 7: Empty space skipping: via the regular acceleration 

structure (left); via the bounding mesh (right). 

  

Figure 8: Before (left) and after (right) the DVR ‘wood-like’ 

artifacts’ reduction by the frames accumulation approach. 



  

Figure 9: Tri-linear (left) and tri-cubic (right) on-the-fly 

samplings for the Ray Casting algorithm. 

The visualization quality can be improved also via the tri-cubic 

filtering instead of the common tri-linear one. We have extended 

the algorithm for the two-dimensional case, presented in [7]. 

Considering the embedded bi-linear texture filtering ability, we can 

make only four samplings to calculate the bi-cubic interpolated 

value. In order to perform a single tri-cubic sampling it is 

necessary to make 8 basic tri-linear samplings from the same 

dataset, but in fact we will calculate the data value, determined by 

64 nearest voxels’ values. 

3. PERFORMANCE ACCELERATION RESULTS 

In table1 we have outlined obtained rendering performance 

improvement by using the space skipping technique based on the 

clipping via bounding polygonal mesh (Figure 6). The Acceleration 

1 and 2 in table1 mean that tri-linear and tri-cubic on-the-fly 

samplings were used in experiments.  

Data Size Acceleration 1 Acceleration 2 

Head 512³ 1.6 3 

Dental 512x512x331 1.7 3.2 

Feet 512x512x250 2 3.6 

Table 1: Rendering performance improvement by volumetric 

polygonal clipping approach. 

 

Figure 10: Test CT datasets (left to right): head, dental, feet . 

4. CONCLUSIONS 

The proposed framework can be used for the multi-modal medical 

data examination. A user can load datasets of the CT and MRI 

modalities as DICOM slices. Each dataset is determined by its 

own coordinate system and a user can properly place datasets 

together in the space via the control points, so that the user sees 

the comprehensive 3D-picture of the medical examination. The 

real-time rendering is performed on consumer graphic cards. 

The framework is also good for stereo demonstrations via the 

stereo-pare of projectors, anaglyph, interlaced rendering or stereo-

monitors (like Zalman with passive polarized glasses) or with 

shutter glasses via the nVidia 3D Vision technology.  

The volumetric clipping option is performed via the arbitrary 

polygonal mesh. The triangles number is not sufficient and does 

not impair the rendering performance, so the mesh may have a 

rather complex structure and may be fitted to the visible features 

in the space. The clipping may be used either for the performance 

improvement or for the interactive manual data segmentation in 

order to select the volumetric region of interest. We define the 

bounding mesh as the triangulated visible cells of the regular 

acceleration structure. This acceleration technique improves the 

rendering performance up to four times. 
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