
Real-Time SAH BVH Construction for Ray Tracing Dynamic Scenes

Dmitry Sopin1, Denis Bogolepov1, Danila Ulyanov2
1N.I. Lobachevsky State University of Nizhni Novgorod

2R.Y. Alekseev State Technical University of Nizhny Novgorod

sopindm@gmail.com, denisbogol@gmail.com, danila-ulyanov@ya.ru

Abstract

This work is aimed at the development of effective algorithms for

building of full SAH BVH trees on GPU in real-time. In this work

it is presupposed that all the scene objects are represented by a

number of triangles (the so-called “triangle soup”), at the same

time the arbitrary changes in the geometry are allowed in the

process of rendering. The proposed methods have allowed more

than tenfold increase performance compared to the best GPU

implementation known.

Keywords: Ray Tracing, Acceleration Structures, BVH, SAH,

Real-Time, Dynamic Scenes, GPGPU, OpenCL.

1. INTRODUCTION

The ray tracing algorithm was traditionally used in computer

graphics for image synthesis of high quality. For getting the

results a large amount of computation is needed. That is why for a

long time using of the method in interactive applications and real-

time systems seemed impractical. The main difficulties were

related to two phases of work: building of acceleration structures

and visualization based on ray tracing. For the effective solution

of the highlighted tasks the programmable graphics accelerators

can be used, which have turned into high-performance general-

purpose processors over the past few years.

The first tries to implement the ray tracing on the GPU allowed

the processing of the scenes with static geometry only [1]–[3].

This restriction allowed to build accelerating structure at the stage

of pre-processing of the scene and use it on the GPU to make the

rendering faster. The extensive research has shown that on

standard consumer hardware ray tracing in real-time is possible

for all major acceleration structures including uniform and

hierarchical grids, kd-trees and bounding volume hierarchies

(BVH). The technology has already found application in many

fields of tasks but still has been of little use in applications with

dynamic geometry, such as computer games, simulators and

virtual reality systems.

The considerable attention of contemporary research is associated

not only with the ray tracing methods but also with algorithms

allowing the quick building of effective acceleration structures

which would provide the support for dynamic geometry. In this

case the formulation of the problem is changing radically because

now it is necessary to take into consideration not only the

efficiency of data structures at the stage of rendering but also to

take into account the time needed for its construction which often

appears the main limit for the working speed. The recent works

have shown that the supporting for dynamic scenes with using of

all the main accelerating structures can be possible [4]. However,

in some cases the animation is put under some restrictions, in

particular, only the hierarchical movements of the primitives or

deformable scenes are allowed.

In this work for faster rendering BVH trees were chosen because

of their advantages. First, this structure provides the most “dense”

approximation of the geometry of the scene with a minimum

number of nodes – it requires a minimum number of steps in the

construction and traversing of the tree. Secondly, in the process of

tree building only the centroids of triangles are used, that is why

the situation with intersection of the split plane by a triangle is

excluded – the primitive always belongs to the one descendant

only. Another useful property of BVH trees is in the opportunity

for their updating instead of a full rebuild which is used in several

works where the animation is possible only with few limitations.

Nevertheless, the processing of the scenes with arbitrary

animation is possible only due to the presence of algorithms for

fast building of BVH from scratch.

The high performance of ray tracing directly depends on the

quality of the tree the best criterion for which serves the surface

area heuristic (SAH). This heuristic was first proposed in [5] and

is defined as follows: at each step of the recursive construction of

the tree in the process of splitting of the set of triangles into two

parts L and R the cost of that splitting is being computed:

 RLIT N

TSA

RSA
N

TSA

LSA
KKRLTSAH

)(

)(

)(

)(
)),((

Here, SA(X) stands for the area of the bounding volume of node

X, NX stands for the number of triangles in X, when KI and KT

stand for implementation options that determine the cost of the

test for intersection and traversal of the tree. The high effect of

rendering is achieved through minimizing of the cost of splittings

in the process of construction of data structures.

The first attempt to interactively build the SAH BVH trees was

made in work [6], in which the author has adapted the binned

technique that was originally proposed for kd-trees, and

effectively implemented it on the multi-core CPUs. Subsequently,

this implementation was further developed for the Intel MIC

architecture, where the best timing estimates were obtained [8].

Recent work [7] has shown that the construction of SAH BVH

tree on the GPU can be also possible, but the specified timing

estimates turned out to be even higher than the similar estimates

for older CPU [6], despite the use of more powerful architecture.

Thus, at the present time there are no effective methods for

construction of SAH BVH trees on the GPU, which would

provide the opportunity for rendering of arbitrary dynamic scenes.

2. PROBLEM STATEMENT

This work is aimed at development of effective algorithms for

building of full SAH BVH trees on GPU in real-time. In this work

it is presupposed that all the scene objects are represented by a

number of triangles (the so-called “triangle soup”), at the same

time the arbitrary changes in the geometry are allowed in the

process of rendering.

From a conceptual point of view the algorithm of the tree building

is analogous to the algorithms which are described in the works

[6]–[8]. Still in contrast with the works mentioned we don’t use

the simple heuristics similar to “Median Splits” and “LBVH”

because they lead to decline in the quality of the generated data

structure and consequently to the worse rendering performance.

This work proposes a number of methods for the effective

mapping of the general algorithm to the architecture of modern

GPUs what allowed to accelerate the tree building up to 10 times

compared to the best known GPU implementation [7].

3. BUILDING OF THE SAH BVH TREE

3.1 The Basic Algorithm

The process of the tree construction is represented in the form of

the set of tasks the subsequent performing of which is realized

through the concept of the task queue. The algorithm can be

described by the following sequence of steps:

1) The root node is added to the task queue that contains all

geometric primitives.

2) The first node in queue becomes current.

3) The current node is split into 16 bins along all the three

axes. For every bin the number of geometrical primitives is

calculated and the bounding volume is computed.

4) The optimal split plane is calculated by using SAH.

5) The current node is split into two new nodes containing

geometrical primitives located to the left and to the right

from the selected plane respectively.

6) For every new node the number of geometrical primitives is

compared with the specified threshold number (we used 4).

If the number of the primitives exceeds the threshold then

the corresponding node is added to the task queue.

7) The current node is removed from the task queue. If the

queue isn’t empty then we go to the step 2.

3.2 The Adaptation for GPU

The main objective of this work was mapping of the general

algorithm on the architecture of modern graphics processors.

The most simple way is mapping of a single task on one work

group (here and below we use the terminology of OpenCL

standard). In this case, we will repeat getting of the same result as

in work [7]: low performance on the first levels of the tree, as

soon as only some part of the available cores will be used in

calculations, and the decline in productiveness at the last levels of

the tree associated with an increase in overhead costs needed to

support a large number of small tasks.

The following relatively simple method was proposed in work [8]

and implemented for the Intel MIC architecture: for large nodes

(with the number of primitives bigger than the specified

threshold) the resources of the whole processor are used, while

the other nodes are processed according to the previous scheme –

a single task for a work group. This approach has proved effective

for the architecture of Intel MIC, but when mapped on the GPU

architecture there appears a number of problems. As in the case

with the previous approach, there is a reduce in productivity at the

low levels of the tree, and there an “intermediate layer” appears –

a part of the levels at which a single task is not able to load the

entire graphics processor, but the number of tasks is not large

enough to project them onto a work group.

3.2.1 The General Scheme

For an effective use of modern GPU we have developed an

improved algorithm for building of SAH BVH tree, which is

largely free from the problems mentioned above. The general

scheme of the algorithm is as follows:

1) At each step of the construction of the tree all the available

tasks are fulfilled, regardless of their size. As a result, we are

able to utilize the resources of the GPU to the full as well as

to reduce the overhead costs associated with the transfer of

tasks from the CPU.

2) For the processing of the nodes containing a sufficient

number of geometric primitives (we used a threshold of

256), several work groups are used on a node (we used

N/512, where N – the number of geometric primitives in the

node). In conjunction with the optimization from paragraph

1), this approach enables us to use the number of resources

close to the optimum.

3) The construction of the tree is divided into 3 stages: the

processing of large nodes (more than 32K of primitives), the

processing of secondary nodes (from 256 to 32K primitives)

and the processing of small nodes (less than 256 primitives).

This approach makes it possible to use the special

modifications of the algorithm at each level, what results in

the possibility to reduce the overhead costs and optimize the

utilization of the GPU resources.

Figure 1: Construction of the tree level.

Figure 1 illustrates the most general scheme for building of the

level of the tree (which is used at the stage of processing of the

large nodes). Of all the presented stages only the sending of tasks

and the generation of the new tasks are implemented on the CPU.

These stages are the least labor-consuming, so their porting to the

GPU is not reasonable.

3.2.2 The Generation of the Tasks for GPU

As it was stated earlier, in our implementation for processing of

one node the several work groups are used, while several groups

of nodes are processed simultaneously. This allows for high

loading of the GPU, but, unfortunately, leads to the fact that there

is no simple way to determine the amount of work for each

specific work group. Therefore, as the additional parameters for

work group we pass two data arrays – the number of the node

being processed by the work group, and the number of this work

group in the node. This information combined with data about

nodes (the number of the primitives, the number of the first

Sending Tasks

Counting

Reduction

Complete Reduction

Finding Split

Reordering

Generating Tasks

primitive, bounding the volume of the node) allows to determine

the amount of work for each work group.

3.2.3 Counting

The second stage in the construction of the tree level is counting

of the number of primitives in each bin and of the bounding

volumes (AABBs) of these primitives for each work group (this is

correct as each work group processes the primitives from one

node of the tree). In this case, the bins for all the three coordinate

planes are calculated – as it was proved by the experiments in

certain scenes it makes a significant (up to 10-fold) performance

increase. Stage can be divided into two parts:

1) The conversation of information about geometric primitives

into the information about the bins of tree nodes.

2) The application of the algorithm for parallel reduction to this

data.

To implement the first part we have used the approach similar to

that used in works [7] and [8] – the primitives of each work group

are divided into parts consisting of 16 elements (in accordance

with the number of bins) and each of the mentioned parts is

processed by 16 consecutive threads (“halfwarp” in the

terminology of NVIDIA CUDA). This algorithm can be described

by the following pseudo code:

for i in 1 to 16 do

 if bin(triangle[i]) = threadId

 bin[threadId].append(triangle[i])

Using 16-passes on the 16 elements may seem superfluous, but it

has the following advantages:

1) It is optimally mapped on the GPU SIMD architecture.

2) It minimizes memory conflicts (eliminates “bank conflicts”

and provides “coalesced” access).

As an alternative solution to this problem we can propose the

calculation by each data stream of the bin for an associated

triangle and the subsequent reduction of these data. This approach

leads to an increase in required memory (about 16 times) and the

significant computational costs associated with the subsequent

reduction.

3.2.4 Reduction

With the implementation of this phase the classical algorithm of

parallel reduction was used. However, in the process of adaptation

one significant change was made.

Firstly, we do not use a variable number of iterations of the

algorithm. For the processing of the “average” levels of the tree

just one iteration is enough, for the processing of “high” levels,

we used an additional kernel of “final reduction”, reducing all the

available sets of bins in one (for “small” levels this step is not

needed at all). The losses of productivity are not important for this

approach, since most of the computational burden falls on the

steps of calculation and reduction. The result is a simpler

algorithm and reduced the amount of data exchange between the

CPU and the GPU.

3.2.5 Search of Optimal Splitting

This is the one of the least resource-consuming parts of the

algorithm. On the base of the available data on the bins the

optimal split plane is calculated in it with the help of SAH. It was

implemented on the GPU to reduce the amount of the traffic

between the CPU and the accelerator.

3.2.6 Reordering

The last resource-consuming stage of the tree construction is the

reordering of the nodes’ elements in accordance with the found

splittings (the elements on the left of the split plane are moved to

the beginning of the array, the elements on the right – at the end).

As a basis for solving this sub problem we used the radix sort

algorithm, effectively implemented for the GPU in work [11].

This algorithm can be divided into two main parts – the prefix

summation of the indices of the record (the place in the array

where the element is to be placed) for all the geometric primitives

of the node and strictly speaking the reordering of the array

elements. Traditionally these parts are performed in several passes

which entails additional costs of memory because of the need to

store the results of intermediate calculations and they require

additional calculations (associated with the launch of a prefix

summation on the “global” level [12]).

In our algorithm the atomic operations on the global memory

were used instead of the “global” prefix summation. As a result

the additional steps for computing of the prefix sum on a global

level have been replaced by one atomic operation for the work

group on the local level what allowed to reduce the memory

consumption and the number of computations.

3.2.7 Generating new tasks

It also belongs to the least resource-consuming parts of the tree

building. At this stage the new nodes (corresponding to the

obtained splittings) are added into the resulting tree and,

depending on their size, the new tasks are generated. At the stages

of processing of large and medium-sized nodes the nodes with the

number of primitives which is less than a predetermined threshold

(we used the 32K for the large and 256 for the medium ones) are

added to the task queue belonging to the next step. On the stage of

processing of small units they are considered to be the leaves

(here as the threshold value is used 4).

4. TRAVERSING

4.1 The Basic Algorithms

So there are two main approaches to the realization of traversing

of the tree on GPU: the stack-based and the stackless. The

stackless approach was widely spread when only shaders were

available for the purposes of ray tracing. As soon as writing data

from the fragment shader (kernel) was possible only at the current

fragment of the output texture, for realization of the full stack it

was necessary to use the multi-pass schemes of low efficiency.

With the advent of such instruments as CUDA and OpenCL it

became possible to use the stack because we can easily get the

access to the global device memory for reading and writing. Still

to compare the performance we have realized the both variants.

4.1.1 The Stackless Algorithm

The stackless algorithms are normally based on the preprocessing

of the tree and providing of additional information for the

traversing of the tree. The algorithm based on using of the escape

indices serves as an example of that approach for BVH tree [9].

The information about the node that is passed the next is counted

and saved for every node. The algorithm showed some good

results on simple scenes but with the scene getting more complex

(what means the tree getting bigger) it turned out to behave much

worse than the stack one. Besides that in the situation when the

tree is built on every frame it is necessary to take into

consideration any additional processing of the tree because it must

be done every time.

4.1.2 The Stack Algorithm

When traversing with a stack we can choose to which node of the

tree we are to go further. For the ray tracing tasks the tree is being

traversed in front to back order, what means that on every step

you need to go to the nearest node. In this way the search for the

nearest hit is done quicker. For traversing of the tree with a stack

it is necessary to organize separate stacks for each thread. For that

we need to allocate the fixed-size array in the private (in the terms

of OpenCL) memory sufficient for storing of the stack of the

maximum possible length the same as it is described in work [10].

4.1.3 The Stack in Registers

Though the organization of the private stack for every thread

doesn’t appear to be a problem anymore still any incoherent

references to the external memory are undesirable. We have

realized the variant of the traversing with a stack in the GPU

registers. Thus for the stack element only 2 bits from the register

will be given. With this approach the traversal algorithm has got

three main states: to visit the right neighboring node, to visit the

left neighboring node and also to go up the tree. A set of these

states provides sufficient information for the traversing of the tree

in the same order as with a normal stack. However, because of the

growing complexity of the kernel code and the need to prepare

and read the additional information for each node of the tree, such

an approach in the current implementation did not provide for a

significant advantage in comparison with the normal stack.

5. RESULTS

To estimate the operating time of the described algorithm the

different scenes have been used with complexity from 10K to 3M

of triangles. The tests have been conducted on a computer with

the GPU NVIDIA GeForce GTX 480 being run by the Linux

operating system (with 270.41.06 version of the video driver).

Figure 2: Sample frames from the test scenes

(Fairy Forest, Conference, Welsh-dragon and Cathedral).

Table 1 contains the comparison of our results with the results

from other well-known works.

Table 1: Comparison to other GPU SAH BVH builders:

pure build time (ms) / rendering performance (FPS, 1024×1024).

Scene
Lauterbach [7]

(GTX 280)

Wald [8]

(Intel MIC)

Ours

(GTX 480)

Toasters / 11K N/A 11 / 105 13 / 83

Fairy Forest / 174K 488 / 21 31 / 29 40 / 25

Cloth / 92K N/A 19 / 97 19 / 42

Dragon/Bunny / 252K 403 / 8 43 / 55 49 / 15

Conference / 284K 477 / 24 42 / 46 98 / 36

Welsh-dragon / 2.2M N/A N/A 362 / 20

Cathedral / 3.2M N/A N/A 697 / 14

6. CONCLUSION

In this work the task of building of full SAH BVH on GPU has

been studied. The given methods for adapting of the general

algorithm allowed to improve the results at more than 10 times

compared to the best implementation known [7] (taking into

account the difference in the hardware used – up to 5 times).

Moreover, the obtained timing estimates are comparable with the

estimates for the “compromise” structures (providing for rapid

construction, but less effective for the ray tracing – Hybrid BVH,

Two-level Grids), obtained in recent works [7], [13]. The current

implementation allows to perform the rendering of arbitrary

dynamic scenes of up to 800K of triangles and static scenes of up

to 5M of triangles.

7. REFERENCES

[1] Timothy J. Purcell. Ray Tracing on a Stream Processor.

Ph.D. dissertation, Stanford University, March 2004.

[2] Foley T., Sugerman J. KD-Tree Acceleration Structures for

a GPU Raytracer. In Proceedings of the ACM SIGGRAPH/

Eurographics conf. on Graphics hardware, pp. 15–22, 2005.

[3] J. Gunther, S. Popov, H. Seidel, P. Slusallek. Real-time Ray

Tracing on GPU with BVH-based Packet Traversal. In Proc.

of the IEEE Symposium on Interactive Ray Tracing, 2007.

[4] I. Wald, W. Mark, J. Gunther, ... , P. Shirley. State of the Art

in Ray Tracing Animated Scenes. Computer Graphics Forum

28(6), 2009, pp. 1691–1722.

[5] J. Goldsmith and J. Salmon. Automatic Creation of Object

Hierarchies for Ray Tracing. IEEE Computer Graphics and

Applications, vol. 7, no. 5, pp. 14–20, 1987.

[6] I. Wald. On fast Construction of SAH-based Bounding

Volume Hierarchies. In Proceedings of the Eurographics

Symposium on Interactive Ray Tracing, 2007, pp. 33–40.

[7] C. Lauterbach, … , D. Manocha. Fast BVH Construction on

GPUs. Computer Graphics Forum, 28, 2, 375–384, 2009.

[8] I. Wald. Fast Construction of SAH BVHs on the Intel Many

Integrated Core (MIC) Architecture. IEEE Transactions on

Visualization and Computer Graphics, 2010.

[9] Thrane N., Simonsen L. A Comparison of Acceleration

Structures for GPU Assisted Ray Tracing. Master’s thesis

University of Aarhus (2005).

[10] Zhou K., ... , Guo B. Real-time KD-tree construction on

graphics hardware. ACM Trans. Graph. 27, 5, 1–11, 2008.

[11] Satish N., Harris M., Garland M. Designing efficient sorting

algorithms for manycore GPUs.

[12] Harris M. Parallel Prefix Sum (Scan) with CUDA.

[13] J. Kalojanov, … , P. Slusallek. Two-level Grids for Ray

Tracing on GPUs. In Proc. of the Eurographics conf., 2011.

