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Abstract 

This work is aimed at the development of effective algorithms for 

building of full SAH BVH trees on GPU in real-time. In this work 

it is presupposed that all the scene objects are represented by a 

number of triangles (the so-called “triangle soup”), at the same 

time the arbitrary changes in the geometry are allowed in the 

process of rendering. The proposed methods have allowed more 

than tenfold increase performance compared to the best GPU 

implementation known. 
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1. INTRODUCTION 

The ray tracing algorithm was traditionally used in computer 

graphics for image synthesis of high quality. For getting the 

results a large amount of computation is needed. That is why for a 

long time using of the method in interactive applications and real-

time systems seemed impractical. The main difficulties were 

related to two phases of work: building of acceleration structures 

and visualization based on ray tracing. For the effective solution 

of the highlighted tasks the programmable graphics accelerators 

can be used, which have turned into high-performance general-

purpose processors over the past few years. 

The first tries to implement the ray tracing on the GPU allowed 

the processing of the scenes with static geometry only [1]–[3]. 

This restriction allowed to build accelerating structure at the stage 

of pre-processing of the scene and use it on the GPU to make the 

rendering faster. The extensive research has shown that on 

standard consumer hardware ray tracing in real-time is possible 

for all major acceleration structures including uniform and 

hierarchical grids, kd-trees and bounding volume hierarchies 

(BVH). The technology has already found application in many 

fields of tasks but still has been of little use in applications with 

dynamic geometry, such as computer games, simulators and 

virtual reality systems. 

The considerable attention of contemporary research is associated 

not only with the ray tracing methods but also with algorithms 

allowing the quick building of effective acceleration structures 

which would provide the support for dynamic geometry. In this 

case the formulation of the problem is changing radically because 

now it is necessary to take into consideration not only the 

efficiency of data structures at the stage of rendering but also to 

take into account the time needed for its construction which often 

appears the main limit for the working speed. The recent works 

have shown that the supporting for dynamic scenes with using of 

all the main accelerating structures can be possible [4]. However, 

in some cases the animation is put under some restrictions, in 

particular, only the hierarchical movements of the primitives or 

deformable scenes are allowed. 

In this work for faster rendering BVH trees were chosen because 

of their advantages. First, this structure provides the most “dense” 

approximation of the geometry of the scene with a minimum 

number of nodes – it requires a minimum number of steps in the 

construction and traversing of the tree. Secondly, in the process of 

tree building only the centroids of triangles are used, that is why 

the situation with intersection of the split plane by a triangle is 

excluded – the primitive always belongs to the one descendant 

only. Another useful property of BVH trees is in the opportunity 

for their updating instead of a full rebuild which is used in several 

works where the animation is possible only with few limitations. 

Nevertheless, the processing of the scenes with arbitrary 

animation is possible only due to the presence of algorithms for 

fast building of BVH from scratch. 

The high performance of ray tracing directly depends on the 

quality of the tree the best criterion for which serves the surface 

area heuristic (SAH). This heuristic was first proposed in [5] and 

is defined as follows: at each step of the recursive construction of 

the tree in the process of splitting of the set of triangles into two 

parts L and R the cost of that splitting is being computed: 
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Here, SA(X) stands for the area of the bounding volume of node 

X, NX stands for the number of triangles in X, when KI and KT 

stand for implementation options that determine the cost of the 

test for intersection and traversal of the tree. The high effect of 

rendering is achieved through minimizing of the cost of splittings 

in the process of construction of data structures. 

The first attempt to interactively build the SAH BVH trees was 

made in work [6], in which the author has adapted the binned 

technique that was originally proposed for kd-trees, and 

effectively implemented it on the multi-core CPUs. Subsequently, 

this implementation was further developed for the Intel MIC 

architecture, where the best timing estimates were obtained [8]. 

Recent work [7] has shown that the construction of SAH BVH 

tree on the GPU can be also possible, but the specified timing 

estimates turned out to be even higher than the similar estimates 

for older CPU [6], despite the use of more powerful architecture. 

Thus, at the present time there are no effective methods for 

construction of SAH BVH trees on the GPU, which would 

provide the opportunity for rendering of arbitrary dynamic scenes. 

2. PROBLEM STATEMENT 

This work is aimed at development of effective algorithms for 

building of full SAH BVH trees on GPU in real-time. In this work 

it is presupposed that all the scene objects are represented by a 

number of triangles (the so-called “triangle soup”), at the same 

time the arbitrary changes in the geometry are allowed in the 

process of rendering. 



From a conceptual point of view the algorithm of the tree building 

is analogous to the algorithms which are described in the works 

[6]–[8]. Still in contrast with the works mentioned we don’t use 

the simple heuristics similar to “Median Splits” and “LBVH” 

because they lead to decline in the quality of the generated data 

structure and consequently to the worse rendering performance. 

This work proposes a number of methods for the effective 

mapping of the general algorithm to the architecture of modern 

GPUs what allowed to accelerate the tree building up to 10 times 

compared to the best known GPU implementation [7]. 

3. BUILDING OF THE SAH BVH TREE 

3.1 The Basic Algorithm 

The process of the tree construction is represented in the form of 

the set of tasks the subsequent performing of which is realized 

through the concept of the task queue. The algorithm can be 

described by the following sequence of steps: 

1) The root node is added to the task queue that contains all 

geometric primitives. 

2) The first node in queue becomes current. 

3) The current node is split into 16 bins along all the three 

axes. For every bin the number of geometrical primitives is 

calculated and the bounding volume is computed. 

4) The optimal split plane is calculated by using SAH. 

5) The current node is split into two new nodes containing 

geometrical primitives located to the left and to the right 

from the selected plane respectively. 

6) For every new node the number of geometrical primitives is 

compared with the specified threshold number (we used 4). 

If the number of the primitives exceeds the threshold then 

the corresponding node is added to the task queue. 

7) The current node is removed from the task queue. If the 

queue isn’t empty then we go to the step 2. 

3.2 The Adaptation for GPU 

The main objective of this work was mapping of the general 

algorithm on the architecture of modern graphics processors. 

The most simple way is mapping of a single task on one work 

group (here and below we use the terminology of OpenCL 

standard). In this case, we will repeat getting of the same result as 

in work [7]: low performance on the first levels of the tree, as 

soon as only some part of the available cores will be used in 

calculations, and the decline in productiveness at the last levels of 

the tree associated with an increase in overhead costs needed to 

support a large number of small tasks. 

The following relatively simple method was proposed in work [8] 

and implemented for the Intel MIC architecture: for large nodes 

(with the number of primitives bigger than the specified 

threshold) the resources of the whole processor are used, while 

the other nodes are processed according to the previous scheme – 

a single task for a work group. This approach has proved effective 

for the architecture of Intel MIC, but when mapped on the GPU 

architecture there appears a number of problems. As in the case 

with the previous approach, there is a reduce in productivity at the 

low levels of the tree, and there an “intermediate layer” appears – 

a part of the levels at which a single task is not able to load the 

entire graphics processor, but the number of tasks is not large 

enough to project them onto a work group. 

3.2.1 The General Scheme 

For an effective use of modern GPU we have developed an 

improved algorithm for building of SAH BVH tree, which is 

largely free from the problems mentioned above. The general 

scheme of the algorithm is as follows: 

1) At each step of the construction of the tree all the available 

tasks are fulfilled, regardless of their size. As a result, we are 

able to utilize the resources of the GPU to the full as well as 

to reduce the overhead costs associated with the transfer of 

tasks from the CPU. 

2) For the processing of the nodes containing a sufficient 

number of geometric primitives (we used a threshold of 

256), several work groups are used on a node (we used 

N/512, where N – the number of geometric primitives in the 

node). In conjunction with the optimization from paragraph 

1), this approach enables us to use the number of resources 

close to the optimum. 

3) The construction of the tree is divided into 3 stages: the 

processing of large nodes (more than 32K of primitives), the 

processing of secondary nodes (from 256 to 32K primitives) 

and the processing of small nodes (less than 256 primitives). 

This approach makes it possible to use the special 

modifications of the algorithm at each level, what results in 

the possibility to reduce the overhead costs and optimize the 

utilization of the GPU resources. 

 

Figure 1: Construction of the tree level. 

Figure 1 illustrates the most general scheme for building of the 

level of the tree (which is used at the stage of processing of the 

large nodes). Of all the presented stages only the sending of tasks 

and the generation of the new tasks are implemented on the CPU. 

These stages are the least labor-consuming, so their porting to the 

GPU is not reasonable. 

3.2.2 The Generation of the Tasks for GPU 

As it was stated earlier, in our implementation for processing of 

one node the several work groups are used, while several groups 

of nodes are processed simultaneously. This allows for high 

loading of the GPU, but, unfortunately, leads to the fact that there 

is no simple way to determine the amount of work for each 

specific work group. Therefore, as the additional parameters for 

work group we pass two data arrays – the number of the node 

being processed by the work group, and the number of this work 

group in the node. This information combined with data about 

nodes (the number of the primitives, the number of the first 
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primitive, bounding the volume of the node) allows to determine 

the amount of work for each work group. 

3.2.3 Counting 

The second stage in the construction of the tree level is counting 

of the number of primitives in each bin and of the bounding 

volumes (AABBs) of these primitives for each work group (this is 

correct as each work group processes the primitives from one 

node of the tree). In this case, the bins for all the three coordinate 

planes are calculated – as it was proved by the experiments in 

certain scenes it makes a significant (up to 10-fold) performance 

increase. Stage can be divided into two parts: 

1) The conversation of information about geometric primitives 

into the information about the bins of tree nodes. 

2) The application of the algorithm for parallel reduction to this 

data. 

To implement the first part we have used the approach similar to 

that used in works [7] and [8] – the primitives of each work group 

are divided into parts consisting of 16 elements (in accordance 

with the number of bins) and each of the mentioned parts is 

processed by 16 consecutive threads (“halfwarp” in the 

terminology of NVIDIA CUDA). This algorithm can be described 

by the following pseudo code: 

for i in 1 to 16 do 

  if bin(triangle[i]) = threadId 

    bin[threadId].append(triangle[i]) 

Using 16-passes on the 16 elements may seem superfluous, but it 

has the following advantages: 

1) It is optimally mapped on the GPU SIMD architecture.  

2) It minimizes memory conflicts (eliminates “bank conflicts” 

and provides “coalesced” access). 

As an alternative solution to this problem we can propose the 

calculation by each data stream of the bin for an associated 

triangle and the subsequent reduction of these data. This approach 

leads to an increase in required memory (about 16 times) and the 

significant computational costs associated with the subsequent 

reduction. 

3.2.4 Reduction 

With the implementation of this phase the classical algorithm of 

parallel reduction was used. However, in the process of adaptation 

one significant change was made. 

Firstly, we do not use a variable number of iterations of the 

algorithm. For the processing of the “average” levels of the tree 

just one iteration is enough, for the processing of “high” levels, 

we used an additional kernel of “final reduction”, reducing all the 

available sets of bins in one (for “small” levels this step is not 

needed at all). The losses of productivity are not important for this 

approach, since most of the computational burden falls on the 

steps of calculation and reduction. The result is a simpler 

algorithm and reduced the amount of data exchange between the 

CPU and the GPU. 

3.2.5 Search of Optimal Splitting 

This is the one of the least resource-consuming parts of the 

algorithm. On the base of the available data on the bins the 

optimal split plane is calculated in it with the help of SAH. It was 

implemented on the GPU to reduce the amount of the traffic 

between the CPU and the accelerator. 

3.2.6 Reordering 

The last resource-consuming stage of the tree construction is the 

reordering of the nodes’ elements in accordance with the found 

splittings (the elements on the left of the split plane are moved to 

the beginning of the array, the elements on the right – at the end). 

As a basis for solving this sub problem we used the radix sort 

algorithm, effectively implemented for the GPU in work [11]. 

This algorithm can be divided into two main parts – the prefix 

summation of the indices of the record (the place in the array 

where the element is to be placed) for all the geometric primitives 

of the node and strictly speaking the reordering of the array 

elements. Traditionally these parts are performed in several passes 

which entails additional costs of memory because of the need to 

store the results of intermediate calculations and they require 

additional calculations (associated with the launch of a prefix 

summation on the “global” level [12]). 

In our algorithm the atomic operations on the global memory 

were used instead of the “global” prefix summation. As a result 

the additional steps for computing of the prefix sum on a global 

level have been replaced by one atomic operation for the work 

group on the local level what allowed to reduce the memory 

consumption and the number of computations. 

3.2.7 Generating new tasks 

It also belongs to the least resource-consuming parts of the tree 

building. At this stage the new nodes (corresponding to the 

obtained splittings) are added into the resulting tree and, 

depending on their size, the new tasks are generated. At the stages 

of processing of large and medium-sized nodes the nodes with the 

number of primitives which is less than a predetermined threshold 

(we used the 32K for the large and 256 for the medium ones) are 

added to the task queue belonging to the next step. On the stage of 

processing of small units they are considered to be the leaves 

(here as the threshold value is used 4). 

4. TRAVERSING 

4.1 The Basic Algorithms 

So there are two main approaches to the realization of traversing 

of the tree on GPU: the stack-based and the stackless. The 

stackless approach was widely spread when only shaders were 

available for the purposes of ray tracing. As soon as writing data 

from the fragment shader (kernel) was possible only at the current 

fragment of the output texture, for realization of the full stack it 

was necessary to use the multi-pass schemes of low efficiency. 

With the advent of such instruments as CUDA and OpenCL it 

became possible to use the stack because we can easily get the 

access to the global device memory for reading and writing. Still 

to compare the performance we have realized the both variants. 

4.1.1 The Stackless Algorithm 

The stackless algorithms are normally based on the preprocessing 

of the tree and providing of additional information for the 

traversing of the tree. The algorithm based on using of the escape 

indices serves as an example of that approach for BVH tree [9]. 

The information about the node that is passed the next is counted 

and saved for every node. The algorithm showed some good 

results on simple scenes but with the scene getting more complex 

(what means the tree getting bigger) it turned out to behave much 

worse than the stack one. Besides that in the situation when the 

tree is built on every frame it is necessary to take into 



consideration any additional processing of the tree because it must 

be done every time. 

4.1.2 The Stack Algorithm 

When traversing with a stack we can choose to which node of the 

tree we are to go further. For the ray tracing tasks the tree is being 

traversed in front to back order, what means that on every step 

you need to go to the nearest node. In this way the search for the 

nearest hit is done quicker. For traversing of the tree with a stack 

it is necessary to organize separate stacks for each thread. For that 

we need to allocate the fixed-size array in the private (in the terms 

of OpenCL) memory sufficient for storing of the stack of the 

maximum possible length the same as it is described in work [10]. 

4.1.3 The Stack in Registers 

Though the organization of the private stack for every thread 

doesn’t appear to be a problem anymore still any incoherent 

references to the external memory are undesirable. We have 

realized the variant of the traversing with a stack in the GPU 

registers. Thus for the stack element only 2 bits from the register 

will be given. With this approach the traversal algorithm has got 

three main states: to visit the right neighboring node, to visit the 

left neighboring node and also to go up the tree. A set of these 

states provides sufficient information for the traversing of the tree 

in the same order as with a normal stack. However, because of the 

growing complexity of the kernel code and the need to prepare 

and read the additional information for each node of the tree, such 

an approach in the current implementation did not provide for a 

significant advantage in comparison with the normal stack. 

5. RESULTS 

To estimate the operating time of the described algorithm the 

different scenes have been used with complexity from 10K to 3M 

of triangles. The tests have been conducted on a computer with 

the GPU NVIDIA GeForce GTX 480 being run by the Linux 

operating system (with 270.41.06 version of the video driver).  

   

   

Figure 2: Sample frames from the test scenes  

(Fairy Forest, Conference, Welsh-dragon and Cathedral). 

Table 1 contains the comparison of our results with the results 

from other well-known works. 

Table 1: Comparison to other GPU SAH BVH builders:  

pure build time (ms) / rendering performance (FPS, 1024×1024). 

Scene 
Lauterbach [7] 

(GTX 280) 

Wald [8] 

(Intel MIC) 

Ours 

(GTX 480) 

Toasters / 11K N/A 11 / 105 13 / 83 

Fairy Forest / 174K 488 / 21 31 / 29 40 / 25 

Cloth / 92K N/A 19 / 97 19 / 42 

Dragon/Bunny / 252K 403 / 8 43 / 55 49 / 15 

Conference / 284K 477 / 24 42 / 46 98 / 36 

Welsh-dragon / 2.2M N/A N/A 362 / 20 

Cathedral / 3.2M N/A N/A 697 / 14 

6. CONCLUSION 

In this work the task of building of full SAH BVH on GPU has 

been studied. The given methods for adapting of the general 

algorithm allowed to improve the results at more than 10 times 

compared to the best implementation known [7] (taking into 

account the difference in the hardware used – up to 5 times). 

Moreover, the obtained timing estimates are comparable with the 

estimates for the “compromise” structures (providing for rapid 

construction, but less effective for the ray tracing – Hybrid BVH, 

Two-level Grids), obtained in recent works [7], [13]. The current 

implementation allows to perform the rendering of arbitrary 

dynamic scenes of up to 800K of triangles and static scenes of up 

to 5M of triangles. 
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