
Parallel SIFT-detector implementation for images matching

Anton I. Vasilyev, Andrey A. Boguslavskiy, Sergey M. Sokolov
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia

{ahbac, anbg}@mail.ru sokolsm@keldysh.ru

Abstract
This paper describes the parallel SIFT-detector implementation
on the basis of the NVIDIA CUDA technology for the images
matching. The SIFT-detector implementation was applied for the
images matching in the stereo-system mounted on the moving car
and for images from the onboard UAV-camera.

Keywords: real-time computer vision, SIFT, CUDA, images
matching.

1. INTRODUCTION

Programmability of general purpose graphic processor units does
them attractive for computer vision tasks in order to accelerate
the processing and reduce the computational load of the central
processor unit. One of the widespread GPU programming
technologies is NVIDIA CUDA. The unified architecture of a set
of graphic processor units NVIDIA GeForce/GTX and
programming model with application of C-like language [10, 11]
lies in its basis.
In the given work the GPU application for the SIFT-detector [1]
implementation is described. This algorithm is often applied to
detect reliable repeated features (blobs/keypoints). The difficulty
of its application in real-time systems in practice is connected
with the essential computing time consumption for the image
preprocessing and the descriptors generating. Parallel
implementation on the basis of CUDA has allowed to apply SIFT
for the tie points searching in the stereoscopic visual system
mounted on the moving car and for images from the onboard
UAV-camera.

2. PARALLEL IMPLEMENTATION OF THE SIFT-
DETECTOR WITH THE USE OF CUDA

There is a series of published papers on the subject of the SIFT-
detector implementation for GPU, for example, [3-8], including
open source on C++ [2] and CUDA [6, 7]. The implementation
[7] is not documented and the work is presented without any time
evaluations in use. In turn, in work [6] the most high-efficiency
time evaluations are showed for realisation with shaders. In work
[9] the comparison procedure of n-dimensional vectors on the
basis of Euclidean metric with CUDA and the primitives library
of computing linear algebra CUBLAS [10, 11] is described. A
distinctiveness of the many papers is to evaluate an execution
time of a general procedure, whereas in applied tasks it is
possible to get an optimization and time gain due to the prior
problem knowledge consideration. For example, there is no
necessity to calculate the blobs orientations in the pure camera
translation mode (without rotation). This speeds up the formation
time of the descriptors array and reduces the processing time.
Another example: the physical limits consideration allows to
reduce an execution time of the descriptors matching, when the

comparison of descriptors from the certain image area is
performed, instead of the comparison of all descriptors. Thus, at
designing of the own SIFT-detector implementation for the
images matching, two main purposes were put: the possibility of
the detector tuning to take into account features of the concrete
applied problem and the possibility of the reuse in modular
systems of computer vision of real time. As a whole, it is
possible to tell that in the chosen approach to the SIFT-detector
algorithm implementation was made the GPU-acceleration
process using the GPU memory economically.

Figure 1: Example of the image processing (800x600, the image

is taken from [6] to compare implementations)

2.1 Features of the SIFT-detector implementation
In the SIFT-detector [1] it is possible to emphasize following
basic stages:
1) The amount of octaves (and sublevels in the octave) for the

image is defined (an amount of the reduced copies with
sizes multiple to degrees 2).

2) Formation of the scale-space representation (SSR) for the
image: for each octave - the array construction of images,
smoothed by Gauss filter (Gss array further), the array size
depends of a number of sublevels

3) Formation of the scale-invariant map of edges. Subtraction
of the adjacent smoothed images in Gss array is performed
for each octave, i.e. outcomes of subtractions are added into
the array (DoG array further).

4) The keypoints selecting for each octave: search of local
extremes (pixels) for everyone DoG and between adjacent
DoGs.

5) Qualification (subpixel position and scale) is fulfilled for
each keypoint.

6) An orientation is assigned for each keypoint: the histogram
construction of the gradient orientations in a neighborhood
of blob (Gss) is fulfilled for corresponding (scale keypoint)
smoothed image; the orientation corresponding to maximum
bin gets out as a blob orientation.

7) The descriptor is calculated for each blob: the histograms
array of gradient orientations is formed round a blob.

Implementation of the described algorithm with the use of the
NVIDIA CUDA technology was constructed as (the algorithm
stages are presented on figures 2-6):
1) Memory allocation (on GPU):

 GPU-memory allocation for the image and its copying
into the GPU-memory.

 Memory allocation for SSR on GPU.
2) The octaves and sublevels processing is shown on figures 2-

3 (it is realised sequentially for economic use of RAM GPU-
memory; green and blue blocks are invoked GPU-memory
for current iteration, at that green blocks use the matrix
representation of GPU-data):
 The Gss array generating (it is fulfilled on GPU only).
 The partial DoG array generating (it is fulfilled on

GPU only).
 The local extremes search and subpixel qualification of

them in the matrix representation (it is fulfilled only on
GPU).

 The keypoints redistribution (fig. 3): from the matrix
into the linear array (it is fulfilled on GPU and CPU).

3) The orientations assigning for each blob is presented on
figures 4-5 (after, all octaves were processed)
 The orientations calculation for each blob: SSR is used

(it is fulfilled on GPU only).
 If several orientations are defined for one blob, the

redistribution is performed in order to construct the
array of blobs, having one orientation (it is fulfilled on
GPU and CPU).

4) The descriptors generating: SSR is used (it is fulfilled on
GPU only).

Figure 2: General scheme of the blobs extraction

Figure 3: Example of the blobs redistribution (the base grid is
extremes map; the indexed grid is used to convert a map to linear
array; the integral sum is used to form the integral array)











Figure 4: General scheme of the orientations calculation

Figure 5: Example of the orientations calculation and
reindexation (The integral sum using for the formation of new
indexes array)

1

2

3

4

5

CUDA thread
(histogram processing)

Blobs Array

5th blob descriptor

1

2

3

4

5

Normalizing

CUDA thread
(descriptor processing)

Figure 6: Example of the descriptors generating

Essential differences of our implementation from work [6]:
1) Texture memory is not used for the images arrays storage,

as a consequence, there are losses in the access speed but
indexation on the image SSR becomes simpler.

2) The octaves and sublevels processing is realised
sequentially (economic use of RAM GPU-memory).

3) The data redistribution (reindexation of array elements and
the transform from the sparse matrix representation into the
linear representation also) has been realised with the use of
GPU and CPU.

4) The orientations calculation is performed in parallel for all
blobs on the SSR image, GPU and CPU are used for
reindexation of the blobs array

5) The Descriptors generating is performed in parallel for all
blobs on the SSR image, and the each histogram of
descriptor is formed by the separate CUDA thread.

6) The octave index and extreme type are used as blob
parameters

7) The detector tuning includes next parameters:
 Start octave index (down-sampling or up-sampling for

the base octave)
 the amount of octaves and sublevels
 the maximum quantity of multi orientations for blobs

(inclusive of nothing)
 the SIFT-descriptor size (a number of histograms and

their size)
2.2 Features of the matching implementation
The matching procedure (fig. 7) contains the following
operations:
1) The physical limits matrix (Boolean matrix) is prepared on

the basis of the discovered blobs
2) The calculation of Euclidean distances matrix is performed

with the use of the physical limits matrix

Figure 7: General scheme of the matching procedure (green cells
are not admissible physically, blue cells are matches)

3) The matches table is calculated based on the physical limits
matrix and Euclidean distances matrix by means of Lowe’s
criteria [1]

4) The matches table is converted from the matrix
representation into the linear array

3. TIME EVALUATIONS AND RESULTS IN
PRACTICE

The processing example of the separate image (800x600 pixels,
all outcomes are shown for GeForce GTX 260) is represented in
tab. 1 for the execution time evaluation of our implementation.
Settings were set: 0 start octave index (no up- or down-
sampling), 4 octaves with 5 sublevels, no more than two
orientations for one blob, 128 elements (4x4x8) in the SIFT-
descriptor. On fig. 1 the processing result is shown
(blobs/extremes: red - minima, dark blue – maxima). The picture
(fig. 1) is taken from work [6] for the purpose of comparison with
the published implementation [6].

Table 1: Time evaluations

Keypoints extraction (subpixel position
and scale, the linear array formation)

37.5 ms/974 blobs

The orientations assigning and regrouping 5.1 ms/1139 blobs

The descriptors generating 43.89 ms

Total time 87.2 ms

Key points extraction

Octave 0 1 2 3

The Generating of Gss-
arrays pyramid, ms

13.25 3.13 1.18 0.68

Transform from sparse
matrix into linear array
(indexing), ms

2.36 1.08 0.67 0.475

Blobs searching (including
indexing), ms

10.47 4.48 2.71 2.32

A number of the discovered
blobs

612 256 89 17

The received time evaluations concede the implementation
(based on shaders) presented in work [6], for example, the image
processing on fig. 1 is about 53.9 ms/1052 blobs (in the multi
orientation mode). However in our implementation the octaves
processing is performed in a consecutive way instead of a
parallel way. Thereby resources of RAM GPU-memory are used
more economically, as it’s important for the UAV-shots
processing. For example, the pair of shots (4016x2672 pixels
everyone) is formed simultaneously for twin-lens UAV-camera.
In turn, the processing of one such shot took about two seconds,
whereas it’s not possible to process such shot without down-
sampling in [6] (the application was downloaded from the site).
The physical limits consideration for the two UAV-shots
matching (2008x1336 in size, figures 9-11 in supplementary
materials) is presented on the plot 1. The processing time of each
of pictures is about 500 ms, at that size of blobs array is about
10.000 elements. The histograms are shown for two cases, when
descriptor contains 128 and 32 elements (big and small bins).

5,48

4,08

2,69

1,791,72
1,25

0,94 0,69

0

1

2

3

4

5

6

tim
e,

 s
ec

on
ds

Plot 1: The matching time evaluations for UAV-shots with the
physical limits consideration (128- and 32- dimensional
descriptor): cyan bins – general procedure (no limits), red bins
consider the motion without rotation (no orientations), yellow
bins – the motion without rotation and the consideration of
similar extremes types, green bins – the motion without rotation,
the consideration of similar extremes types and octaves indexes

The processing of two shots (nonsequential shots of video,
720x576 pixels in size, figures 12-13 in supplementary
materials) took about 300 ms: image 1 – 96 ms/1377 blobs,
image 2 – 97 ms/1437 blobs, matching (without any physical
limits) – 108 ms/67 pairs. If we use the physical limits (without
rotation, similar extremes types, 32 elements in the descriptor)
then the processing time is about 108 ms: image 1 –
44 ms/1251 blobs, image 2 – 45 ms/1341 blobs, matching –
19 ms/120 pairs.
Our implementation work analysis by means of the CUDA visual
profiler is presented on fig. 8 (in supplementary materials). From
drawing it can be seen, that the greatest time is spent for the
SIFT-descriptors generating and convolution operation, and the
summarized contribution for copying operation of the data
between CPU↔GPU makes less than 5 %.

4. CONCLUSION

In the given work the images matching based on the SIFT-
detector is shown for two various applied problems: the video
processing for stereoscopic measurements and the UAV-shots
processing for mosaic formation. The serial-parallel scheme of
the blobs extraction, the possibility of the detector tuning and the
physical limits consideration allowed to increase the processing
speed without essential losses of the used GPU-memory. The
next step of development for this implementation will be an
inclusion the CUFFT library in order to form the image scale-
space representation and the small-size octaves processing in
parallel.

5. REFERENCES
[1] D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,” International Journal of Computer
Vision, vol. 60, pp. 91–110, 2004

[2] A. Vedaldi. (2011) Sift ++ source code and documentation.
http://www.vlfeat.org/

[3] Warn S., Emeneker W., Cothren J., Apon A. “Accelerating
SIFT on Parallel Architectures”, Cluster Computing and
Workshops, 2009

[4] S. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature
tracking and matching in video using programmable
graphics hardware,” Machine Vision and Applications,
March 2007

[5] S. Heymann, K. Muller, A. Smolic, B. Frohlich, and T.
Wiegand. SIFT Implementation and Optimization for
General-Purpose GPU, in WSCG ’ 07, 2007

[6] C. Wu (2011) "SIFTGPU: A GPU implemenatation of scale
invariant feature transform (SIFT)",
http://www.cs.unc.edu/~ccwu/siftgpu/#lowesift

[7] Bjorkman M., A CUDA implementation of SIFT
http://www.csc.kth.se/~celle/

[8] Kayombya G.-R., "Implementation and Optimization of
SIFT on an OpenCL GPU", 2010,
http://beowulf.csail.mit.edu/18.337/projects/reports/Kayomb
ya_report.pdf

[9] V. Garcia, E. Debreuve, F. Nielsen, M. Barlaud "KNN
Search: fast GPU-based implementations and application to
high-dimensional feature matching", ICIP, 2010

[10] NVIDIA, “CUDA technology,” 2011,
http://www.nvidia.com/object/cuda_home_new.html

[11] Borescov A.V., Harlamov A.A. “CUDA basics”. – Moscow,
DMK-Press, 2010 (In Russian).

About the author

Anton Vasilyev, Keldysh Institute of Applied Mathematics of
Russian Academy of Sciences, postgraduate student
Andrey Boguslavskiy, Keldysh Institute of Applied Mathematics
of Russian Academy of Sciences, senior scientist
Sergey Sokolov, Keldysh Institute of Applied Mathematics of
Russian Academy of Sciences, leading scientist

SUPPLEMENTARY MATERIALS

Figure 8: The program work analysis outcomes by means of the CUDA visual profiler

Figure 9: The UAV-shots processed by the SIFT-detector (7 octaves, 5 sublevels, 2 orientations): 539 ms/11058 blobs and
539 ms/9258 blobs

Figure 10: The UAV-shots matching (128-dimensional descriptors, without RANSAC filtering): 5.47 s/865 pairs

Figure 11: The UAV-shots matching (4 octaves, 5 sublevels, 0 orientations, 32-dimensional descriptors, the consideration of similar
extremes types and octaves indexes): 201 ms/9749 blobs, 201 ms/8104 blobs, 695 ms/616 pairs

Figure 12: The shots matching from the camera mounted on the moving car (4 octaves, 5 sublevels, 2 orientations, 128-dimensional
descriptors, no limits): 96 ms/1377 blobs, 97 ms/1437 blobs, 108 ms/67 pairs

Figure 13: The shots matching from the camera mounted on the moving car (4 octaves, 5 sublevels, 0 orientations, 32-dimensional
descriptors, the similar extremes types): 44 ms/1251 blobs, 45 ms/1341 blobs, 19 ms/120 pairs

Figure 14: The UAV-shots matching (4224x2376 in size, start octave index 2, 7 octaves, 5 sublevels, 2 orientations, 128-dimensional
descriptors, the consideration of similar extremes types and octaves indexes): 102 ms/1019 blobs, 91 ms/695 blobs, 15 ms/248 pairs

