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Abstract 
This paper describes the parallel SIFT-detector implementation 
on the basis of the NVIDIA CUDA technology for the images 
matching. The SIFT-detector implementation was applied for the 
images matching in the stereo-system mounted on the moving car 
and for images from the onboard UAV-camera. 
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1. INTRODUCTION 

Programmability of general purpose graphic processor units does 
them attractive for computer vision tasks in order to accelerate 
the processing and reduce the computational load of the central 
processor unit. One of the widespread GPU programming 
technologies is NVIDIA CUDA. The unified architecture of a set 
of graphic processor units NVIDIA GeForce/GTX and 
programming model with application of C-like language [10, 11] 
lies in its basis. 
In the given work the GPU application for the SIFT-detector [1] 
implementation is described. This algorithm is often applied to 
detect reliable repeated features (blobs/keypoints). The difficulty 
of its application in real-time systems in practice is connected 
with the essential computing time consumption for the image 
preprocessing and the descriptors generating. Parallel 
implementation on the basis of CUDA has allowed to apply SIFT 
for the tie points searching in the stereoscopic visual system 
mounted on the moving car and for images from the onboard 
UAV-camera. 

2. PARALLEL IMPLEMENTATION OF THE SIFT-
DETECTOR WITH THE USE OF CUDA 

There is a series of published papers on the subject of the SIFT-
detector implementation for GPU, for example, [3-8], including 
open source on C++ [2] and CUDA [6, 7]. The implementation 
[7] is not documented and the work is presented without any time 
evaluations in use. In turn, in work [6] the most high-efficiency 
time evaluations are showed for realisation with shaders. In work 
[9] the comparison procedure of n-dimensional vectors on the 
basis of Euclidean metric with CUDA and the primitives library 
of computing linear algebra CUBLAS [10, 11] is described. A 
distinctiveness of the many papers is to evaluate an execution 
time of a general procedure, whereas in applied tasks it is 
possible to get an optimization and time gain due to the prior 
problem knowledge consideration. For example, there is no 
necessity to calculate the blobs orientations in the pure camera 
translation mode (without rotation). This speeds up the formation 
time of the descriptors array and reduces the processing time. 
Another example: the physical limits consideration allows to 
reduce an execution time of the descriptors matching, when the 

comparison of descriptors from the certain image area is 
performed, instead of the comparison of all descriptors. Thus, at 
designing of the own SIFT-detector implementation for the 
images matching, two main purposes were put: the possibility of 
the detector tuning to take into account features of the concrete 
applied problem and the possibility of the reuse in modular 
systems of computer vision of real time. As a whole, it is 
possible to tell that in the chosen approach to the SIFT-detector 
algorithm implementation was made the GPU-acceleration 
process using the GPU memory economically. 
 

 
Figure 1: Example of the image processing (800x600, the image 

is taken from [6] to compare implementations) 
 

2.1 Features of the SIFT-detector implementation 
In the SIFT-detector [1] it is possible to emphasize following 
basic stages:  
1) The amount of octaves (and sublevels in the octave) for the 

image is defined (an amount of the reduced copies with 
sizes multiple to degrees 2). 

2) Formation of the scale-space representation (SSR) for the 
image: for each octave - the array construction of images, 
smoothed by Gauss filter (Gss array further), the array size 
depends of a number of sublevels 

3) Formation of the scale-invariant map of edges. Subtraction 
of the adjacent smoothed images in Gss array is performed 
for each octave, i.e. outcomes of subtractions are added into 
the array (DoG array further). 

4) The keypoints selecting for each octave: search of local 
extremes (pixels) for everyone DoG and between adjacent 
DoGs. 

5) Qualification (subpixel position and scale) is fulfilled for 
each keypoint. 



6) An orientation is assigned for each keypoint: the histogram 
construction of the gradient orientations in a neighborhood 
of blob (Gss) is fulfilled for corresponding (scale keypoint) 
smoothed image; the orientation corresponding to maximum 
bin gets out as a blob orientation. 

7) The descriptor is calculated for each blob: the histograms 
array of gradient orientations is formed round a blob. 

Implementation of the described algorithm with the use of the 
NVIDIA CUDA technology was constructed as (the algorithm 
stages are presented on figures 2-6): 
1) Memory allocation (on GPU): 

 GPU-memory allocation for the image and its copying 
into the GPU-memory. 

 Memory allocation for SSR on GPU. 
2) The octaves and sublevels processing is shown on figures 2-

3 (it is realised sequentially for economic use of RAM GPU-
memory; green and blue blocks are invoked GPU-memory 
for current iteration, at that green blocks use the matrix 
representation of GPU-data):  
 The Gss array generating (it is fulfilled on GPU only). 
 The partial DoG array generating (it is fulfilled on 

GPU only). 
 The local extremes search and subpixel qualification of 

them in the matrix representation (it is fulfilled only on 
GPU). 

 The keypoints redistribution (fig.  3): from the matrix 
into the linear array (it is fulfilled on GPU and CPU). 

3) The orientations assigning for each blob is presented on 
figures 4-5 (after, all octaves were processed) 
 The orientations calculation for each blob: SSR is used 

(it is fulfilled on GPU only). 
 If several orientations are defined for one blob, the 

redistribution is performed in order to construct the 
array of blobs, having one orientation (it is fulfilled on 
GPU and CPU). 

4) The descriptors generating: SSR is used (it is fulfilled on 
GPU only). 

 
Figure 2: General scheme of the blobs extraction 

 
Figure 3: Example of the blobs redistribution (the base grid is 
extremes map; the indexed grid is used to convert a map to linear 
array; the integral sum is used to form the integral array) 
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Figure 4: General scheme of the orientations calculation 

 

 
Figure 5: Example of the orientations calculation and 
reindexation (The integral sum using for the formation of new 
indexes array) 
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Figure 6: Example of the descriptors generating 



Essential differences of our implementation from work [6]: 
1) Texture memory is not used for the images arrays storage, 

as a consequence, there are losses in the access speed but 
indexation on the image SSR becomes simpler. 

2) The octaves and sublevels processing is realised 
sequentially (economic use of RAM GPU-memory). 

3) The data redistribution (reindexation of array elements and 
the transform from the sparse matrix representation into the 
linear representation also) has been realised with the use of 
GPU and CPU. 

4) The orientations calculation is performed in parallel for all 
blobs on the SSR image, GPU and CPU are used for 
reindexation of the blobs array 

5) The Descriptors generating is performed in parallel for all 
blobs on the SSR image, and the each histogram of 
descriptor is formed by the separate CUDA thread. 

6) The octave index and extreme type are used as blob 
parameters 

7) The detector tuning includes next parameters: 
 Start octave index (down-sampling or up-sampling for 

the base octave) 
 the amount of octaves and sublevels 
 the maximum quantity of multi orientations for blobs 

(inclusive of nothing) 
 the SIFT-descriptor size (a number of histograms and 

their size) 
2.2 Features of the matching implementation 
The matching procedure (fig. 7) contains the following 
operations: 
1) The physical limits matrix (Boolean matrix) is prepared on 

the basis of the discovered blobs 
2) The calculation of Euclidean distances matrix is performed 

with the use of the physical limits matrix 
 

 

Figure 7: General scheme of the matching procedure (green cells 
are not admissible physically, blue cells are matches) 

3) The matches table is calculated based on the physical limits 
matrix and Euclidean distances matrix by means of Lowe’s 
criteria [1] 

4) The matches table is converted from the matrix 
representation into the linear array 

3. TIME EVALUATIONS AND RESULTS IN 
PRACTICE 

The processing example of the separate image (800x600 pixels, 
all outcomes are shown for GeForce GTX 260) is represented in 
tab. 1 for the execution time evaluation of our implementation. 
Settings were set: 0 start octave index (no up- or down-
sampling), 4 octaves with 5 sublevels, no more than two 
orientations for one blob, 128 elements (4x4x8) in the SIFT-
descriptor. On fig. 1 the processing result is shown 
(blobs/extremes: red - minima, dark blue – maxima). The picture 
(fig. 1) is taken from work [6] for the purpose of comparison with 
the published implementation [6]. 
 
Table 1: Time evaluations  

Keypoints extraction (subpixel position 
and scale, the linear array formation) 

37.5 ms/974 blobs 

The orientations assigning and regrouping  5.1 ms/1139 blobs 

The descriptors generating 43.89 ms 

Total time 87.2 ms 

Key points extraction 

Octave 0 1 2 3 

The Generating of Gss-
arrays pyramid, ms 

13.25 3.13 1.18 0.68 

Transform from sparse 
matrix into linear array 
(indexing), ms 

2.36 1.08 0.67 0.475 

Blobs searching (including 
indexing), ms 

10.47 4.48 2.71 2.32 

A number of the discovered 
blobs 

612 256 89 17 

 
The received time evaluations concede the implementation 
(based on shaders) presented in work [6], for example, the image 
processing on fig. 1 is about 53.9 ms/1052 blobs (in the multi 
orientation mode). However in our implementation the octaves 
processing is performed in a consecutive way instead of a 
parallel way. Thereby resources of RAM GPU-memory are used 
more economically, as it’s important for the UAV-shots 
processing. For example, the pair of shots (4016x2672 pixels 
everyone) is formed simultaneously for twin-lens UAV-camera. 
In turn, the processing of one such shot took about two seconds, 
whereas it’s not possible to process such shot without down-
sampling in [6] (the application was downloaded from the site).  
The physical limits consideration for the two UAV-shots 
matching (2008x1336 in size, figures 9-11 in supplementary 
materials) is presented on the plot 1. The processing time of each 
of pictures is about 500 ms, at that size of blobs array is about 
10.000 elements. The histograms are shown for two cases, when 
descriptor contains 128 and 32 elements (big and small bins). 
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Plot 1: The matching time evaluations for UAV-shots with the 
physical limits consideration (128- and 32- dimensional 
descriptor): cyan bins – general procedure (no limits), red bins 
consider the motion without rotation (no orientations), yellow 
bins – the motion without rotation and the consideration of 
similar extremes types, green bins – the motion without rotation, 
the consideration of similar extremes types and octaves indexes  
 
The processing of two shots (nonsequential shots of video, 
720x576 pixels in size, figures 12-13 in supplementary 
materials) took about 300 ms: image 1 – 96 ms/1377 blobs, 
image 2 – 97 ms/1437 blobs, matching (without any physical 
limits) – 108 ms/67 pairs. If we use the physical limits (without 
rotation, similar extremes types, 32 elements in the descriptor) 
then the processing time is about 108 ms: image 1 – 
44 ms/1251 blobs, image 2 – 45 ms/1341 blobs, matching – 
19 ms/120 pairs. 
Our implementation work analysis by means of the CUDA visual 
profiler is presented on fig. 8 (in supplementary materials). From 
drawing it can be seen, that the greatest time is spent for the 
SIFT-descriptors generating and convolution operation, and the 
summarized contribution for copying operation of the data 
between CPU↔GPU makes less than 5 %. 

4. CONCLUSION 

In the given work the images matching based on the SIFT-
detector is shown for two various applied problems: the video 
processing for stereoscopic measurements and the UAV-shots 
processing for mosaic formation. The serial-parallel scheme of 
the blobs extraction, the possibility of the detector tuning and the 
physical limits consideration allowed to increase the processing 
speed without essential losses of the used GPU-memory. The 
next step of development for this implementation will be an 
inclusion the CUFFT library in order to form the image scale-
space representation and the small-size octaves processing in 
parallel. 
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SUPPLEMENTARY MATERIALS 

 

 
Figure 8: The program work analysis outcomes by means of the CUDA visual profiler 

 

  

Figure 9: The UAV-shots processed by the SIFT-detector (7 octaves, 5 sublevels, 2 orientations): 539 ms/11058 blobs and 
539 ms/9258 blobs 

 

  
Figure 10: The UAV-shots matching (128-dimensional descriptors, without RANSAC filtering): 5.47 s/865 pairs 

 
 



  
Figure 11: The UAV-shots matching (4 octaves, 5 sublevels, 0 orientations, 32-dimensional descriptors, the consideration of similar 
extremes types and octaves indexes): 201 ms/9749 blobs, 201 ms/8104 blobs, 695 ms/616 pairs 
 

  
Figure 12: The shots matching from the camera mounted on the moving car (4 octaves, 5 sublevels, 2 orientations, 128-dimensional 
descriptors, no limits): 96 ms/1377 blobs, 97 ms/1437 blobs, 108 ms/67 pairs 
 

  
Figure 13: The shots matching from the camera mounted on the moving car (4 octaves, 5 sublevels, 0 orientations, 32-dimensional 
descriptors, the similar extremes types): 44 ms/1251 blobs, 45 ms/1341 blobs, 19 ms/120 pairs 
 



  
Figure 14: The UAV-shots matching (4224x2376 in size, start octave index 2, 7 octaves, 5 sublevels, 2 orientations, 128-dimensional 
descriptors, the consideration of similar extremes types and octaves indexes): 102 ms/1019 blobs, 91 ms/695 blobs, 15 ms/248 pairs 
 
 
 
 
 


