

81

Challenges for Graphics and Heterogeneous Architectures: Applications and Technology
Timour Paltashev, Graphics IP Engineering, Advanced Micro Devices, Sunnyvale, California, U.S.A.

{timour.paltashev}@amd.com; {timpal}@mail.npu.edu

Ilya Perminov, National Research University ITMO, St. Petersburg, Russian Federation

{Ilya.Perminov}@amd.com; {studentikispam}@gmail.com

Abstract

The STAR on first part presents comprehensive overview of

popular applications demands and their mapping to graphics and

computing architectures of recent Graphics Processing Units

(GPU) and Accelerated Processing Units (APU). Heterogeneous

System Architecture (HSA)progress and merge of multicore

CPUs with GPU cores in AMD product line is analyzed from

potential user point of view. Semiconductor technology progress

and power reduction challenges with their influence to graphics
and compute architecture evolution have been considered as well.

On the second part we present HSA architecture principles

comprehensive overview and demonstrate the example of ASTC

texture compression algorithm mapping to modern GPU/APU

architecture and OpenCL-HSA software stack. The performance

measurements show significant improvement with applied
algorithms adjustments and modifications.

Keywords: GPU, CPU, APU, graphics architecture,

heterogeneous architecture, compute architecture, texture
compression, ASTC.

1. KEY INDUSTRY CHALLENGES FOR GRAPHICS
ARCHITECTURE IN 2013-2017

Graphics and computing architecture progress has several

inflection points based on different industry branches, media

content creation and massive entertainment industry merging with

communication and computing domains. We may briefly define

programming platforms and application programming interfaces

(API) with direct influence to graphics and compute capabilities

of modern hardware. Implementation of certain requested

functionality hardly depends on semiconductor industry

technology progress as well as on general computation technology

advances. Power budget reduction for the same application

execution is considered to be one of critical features of all new

designs in all range from handheld mobile computing to

supercomputing in data centers. Extremely high cost of

semiconductor manufacturing in small size nodes 14nm and

below requires new approaches on system architecture using
multichip configurations.

Very important influence also comes from independent software

vendors (ISV) developing game engines and visual computing

applications. Game and movie content creators always enquire for

new visual effects of processing capabilities implemented in both

software and hardware levels. Below is listed brief overview of
platforms and technology development.

Platforms and APIs:

 OpenGL ES 3.0, OpenGL 4.4, Mantle (AMD), OpenGL

(common)

 Windows 8.1 with DirectX 11.2, Windows 2015

“Threshold” with DirectX 12 and SVM lite support,

Windows 2017 with DirectX 13 and full SVM support,

 OpenCL 2.0 (2014-15), OpenCL 2.1 (2015-16) and

OpenCL 3.0 (2016-17)

Technology major trends:

 Interposer technology including advanced

semiconductor and systems packaging with interposing

on silicon (organic and glass as well)

 Using HBM or High Bandwidth Memory in GPU, CPU

and APU

 Sequential transitions to 20 nm (2014), 14 nm (2016)

and 10 nm (2017+) semiconductor manufacturing

processes on foundries

 Virtual page migration (2014-15), Low power HSA-

based DSP (2015)

 Chiplets (tiny chips) combined on multichip module

(MCM)

Major CPU/GPU and SoC vendors develop their product roadmap

responding to challenges in platforms and technology:

AMD response on product line (public info limited by 2015):

 Discrete GPUs: Bonaire and Hainan (28nm/2013),

Hawaii (28nm/2013-2014), Tonga and

Iceland(28nm/2014), Bermuda and Fiji (28nm/2015)

 APUs: Kabini (28nm/2013), Kaveri and

Mullins(28nm/2014), Carrizo (28nm/2015) and
Amur/Nolan (20nm/2015).

Intel’s response on product line (public info limited by 2016):

 CPU-GPU SoC: Haswell and Silvermont(22nm/2013),

Broadwell and Airmont (14nm/2014), Braswell and

Goldmont (14nm/2015), Cannonlake (10nm/2016).

Nvidia’s response on product line:

 DGPU Kepler II(GK11x) (28nm/2013), Maxwell

(28nm/2014) and project Denver with custom ARM 64-bit

core (28nm/2014)

 Mobile SoC and application processors: Logan (28nm/2013),

Tegra K1 (28nm/2014) Tegra M1 (20nm/2015).

2. SOFTWARE VENDORS VISIBLE CHALLENGES

Graphics ISVs traditionally have their own set of requests and

challenges which may enable new applications. We may consider

following list which can be complemented any time by new ideas:

1. Virtual Reality Holographic Rendering for head-mounted

displays (HMD).

2. Global illumination rendering in real time.

3. Decoupled shading to process highly detailed scenes.
4. Object+texture space combined memory hierarchy.

VR for HMD generates a lot of attention, like product of

Occulus Rift and Valve startup companies. They have

significantly higher requirements for processing speed due to zero

latency tolerance problem. Head movement demands smooth

andsoftimage update, visible to eye and not causing movement

artifacts. It requires high refresh rates and high resolution stereo

image generation comparing to existing game consoles. In

addition it requires image warp and post rendering to account for

simulated lens optics. Next few years will be spent to find

optimized solutions for HMD VR image generation. It may

require significant computational power growth for GPU

mailto:%7btimour.paltashev%7d@amd.com
mailto:%7btimpal%7d@mail.npu.edu
mailto:%7bIlya.Perminov%7d@amd.com
mailto:studentikispam%7d@gmail.com

82

considering high resolution frame rate doubled or tripled versus
latest game consoles.

Global illumination is one of favorite applications applied by

researchers to GPU since they become more programmable in

mid-2000s. Traditional local illumination shading and texturing

algorithms implementation in popular game titles have been used

as architecture optimization anchor while leaving serious

capabilities for general computing which support global

illumination models. We may group target applications and with

their influence to architecture specifications.

First group with dense stream compute pattern (more suitable for

GPU cores):

 3D graphics in games and engineering

 High performance libraries for compute problems

suitable for GPU acceleration

Second group with sparse compute pattern (more suitable for

CPU/ latency optimizing system)

 Compiled OpenCL/C++ code for sparse problems

 Ray tracers for global illumination

 Other Khronosgroup platforms and based applications

Third groupwith specialsignal and image processing pattern

(more suitable for DSP cores + fixed function blocks)

 Media processing

Such application groups create different vectors on architecture

trends and are challenging designers to create computing

machines which may fulfill several requirements. Some of them

may look quite opposite and generate several issues on

architecture optimization. Modern complex Systems-on-Chip

(SoC) with different types of processing cores could be potential

platforms. But simply putting together on the piece of silicon

multiple cores does not solve the problem of programmability;

even it makes the problem worse. New architecture concept of

Heterogeneous System Architecture (HSA) could solve potential

problem of creating multipurpose and power/cost efficient

computing machines.

3. INTRODUCTION TO HETEROGENEOUS
SYSTEM ARCHITECTURE (HSA)

HSA is a new hardware architecture that integrates heterogeneous

processing elements into a coherent processing environment.

Coherent processing as a technique ensures that multiple

processors see a consistent view of memory, even when values in

memory may be updated independently by any of those

processors. Memory coherency has been taken for granted in

homogeneous multiprocessor and multi-core systems for decades,

but allowing heterogeneous processors (CPUs, GPUs and DSPs)

to maintain coherency in a shared memory environment is a

revolutionary concept. Ensuring this coherency poses difficult

architectural and implementation challenges, but delivers huge

payoffs in terms of software development, performance and

power. The ability for CPUs, DSPs and GPUs to work on data in

coherent shared memory eliminates copy operations and saves

both time and energy. The programs running on a CPU can hand

work off to a GPU or DSP as easily as to other programs on the

same CPU; they just provide pointers to the data in the memory

shared by all three processors and update a few queues. Without

HSA, CPU-resident programs must bundle up data to be

processed and make input-output (I/O) requests to transfer that

data via device drivers that coordinate with the GPU or DSP

hardware. HSA allows developers to write software without

paying much attention to the processor hardware available on the

target system configuration with or without GPU, DSP, video
hardware and other types of specialized compute accelerators.

Fig.1 depicts generic HSA APU with multiple CPU cores and
accelerated compute units (CU) which may include any type.

Figure 1: Generic HSA Accelerated Processing Unit (APU)

4. HSA OVERVIEW

Essential HSA features include:

 Full programming language support

 User Mode Queueing

 Heterogeneous Unified Memory Access (hUMA)

 Pageable memory

 Bidirectional coherency

 Compute context switch and preemption

Shared page table support. To simplify OS and user software,

HSA allows a single set of page table entries to be shared between

CPUs and CUs. This allows units of both types to access memory

through the same virtual address. The system is further simplified

in that the operating system only needs to manage one set of page

tables. This enables Shared Virtual Memory (SVM) semantics

between CPU and CU.
Page faulting. Operating systems allow user processes to access

more memory than is physically addressable by paging memory to

and from disk. Early CU hardware only allowed access to pinned

memory, meaning that the driver invoked an OS call to prevent

the memory from being paged out. In addition, the OS and driver

had to create and manage a separate virtual address space for the

CU to use. HSA removes the burdens of pinned memory and

separate virtual address management, by allowing compute units

to page fault and to use the same large address space as the CPU.
User-level command queuing. Time spent waiting for OS kernel

services was often a major performance bottleneck in prior

throughput computing systems. HSA drastically reduces the time

to dispatch work to the CU by enabling a dispatch queue per

application and by allowing user mode process to dispatch

directly into those queues, requiring no OS kernel transitions or

services. This makes the full performance of the platform

available to the programmer, minimizing software driver

overheads.
Hardware scheduling.HSA provides a mechanism whereby the

CU engine hardware can switch between application dispatch

queues automatically, without requiring OS intervention on each

switch. The OS scheduler is able to define every aspect of the

switching sequence and still maintains control. Hardware

scheduling is faster and consumes less power.
Coherent memory regions. In traditional GPU devices, even

when the CPU and GPU are using the same system memory

region, the GPU uses a separate address space from the CPU, and

the graphics driver must flush and invalidate GPU caches at

required intervals in order for the CPU and GPU to share results.

Unified Coherent Memory

CPU
CU

1

CPU
CU

N
…

CPU
CU

2

HSA
CU

1

HSA
CU

2

HSA
CU

M-1

HSA
CU

M
…

HSA
CU

3

83

HSA embraces a fully coherent shared memory model, with

unified addressing. This provides programmers with the same

coherent memory model that they enjoy on SMP CPU systems.

This enables developers to write applications that closely couple

CPU and GPU CU codes in popular design patterns like producer-

consumer. The coherent memory heap is the default heap on HSA

and is always present. Implementations may also provide a non-

coherent heap for advance programmers to request when they

know there is no sharing between processor types.

The HSA platform is designed to support high-level parallel

programming languages and models, including C++ AMP, C++,

C#, OpenCL, OpenMP, Java and Python, as well as few others.

HSA-aware tools generate program binaries that can execute on

HSA-enabled systems supporting multiple instruction sets

(typically, one for the CPU-type CU and one for the GPU/DSP

type CU) and also can run on existing architectures without HSA

support.

Program binaries that can run on both CPUs and CUs contain

CPU ISA (Instruction Set Architecture) for CPU unit and HSA

Intermediate Language (HSAIL) for the CU. A finalizer converts

HSAIL to CU ISA. The finalizer is typically lightweight and may

run at install time, compile time, or program execution time,
depending on choices made by the platform implementation.

HSA architecture example platform is depicted on Figure 2.

Figure 2: HSA architecture example platform.

5. HSA IMPLEMENTATION AND CONCEPTS

Unified Programming Model. General computing on GPUs has

progressed in recent years from graphics shader-based

programming to more modern APIs like DirectCompute and

OpenCL™. While this progression is definitely a step forward, the

programmer still must explicitly copy data across address spaces,
effectively treating the GPU as a remote processor.

Task programming APIs like Microsoft’s ConcRT, Intel’s Thread

Building Blocks, and Apple’s Grand Central Dispatch are recent

innovations in parallel programming. They provide an easy to use

task-based programming interface, but only on the CPU.

Similarly, Thrust from NVIDIA provides a similar solution on the
GPU.

HSA moves the programming bar further, enabling solutions for

task parallel and data parallel workloads as well as for sequential

workloads. Programs are implemented in a single programming

environment and executed on systems containing both CPUs and
CUs.

HSA provides a programming interface containing queue and

notification functions. This interface allows devices to access

load-balancing and device-scaling facilities provided by the

higher-level task queuing library. The overall goal is to allow

developers to leverage both CPU and CU devices by writing in

task-parallel languages, like the ones they use today for multicore

CPU systems. HSA’s goal is to enable existing task and data-

parallel languages and APIs and enable their natural evolution

without requiring the programmer to learn a new HSA-specific

programming language. The programmer is not tied to a single

language, but rather has available a world of possibilities that can

be leveraged from the ecosystem.

Queuing. HSA devices communicate with one another using

queues. Queues are an integral part of the HSA architecture. CPUs

already send compute requests to each other in queues in popular

task queuing run times like ConcRT and Threading Building

Blocks. With HSA, both CPUs and CUs can queue tasks to each
other and to themselves.

The HSA runtime performs all queue allocation and destruction.

Once an HSA queue is created, the programmer is free to dispatch

tasks into the queue. If the programmer chooses to manage the

queue directly, then they must pay attention to space available and

other issues. Alternatively, the programmer can choose to use a
library function to submit task dispatches.

A queue is a physical memory area where a producer places a

request for a consumer. Depending on the complexity of the HSA

hardware, queues might be managed by any combination of

software or hardware. Queue implementation internals are not
exposed to the programmer.

Hardware-managed queues have a significant performance

advantage in the sense that an application running on a CPU can

queue work to a CU directly, without the need for a system call.

This allows for very low-latency communication between devices,

opening up a new world of possibilities. With this, the CU device
can be viewed as a peer device, or a co-processor.

CPUs can also have queues. This allows any device to queue work
for any other device.

6. ASTC OVERVIEW

As an example, we have modified ASTC compression algorithm

to utilize HSA features. ASTC is a modern texture compression

format developed by ARM and AMD. As the other texture

compression formats, it aims on reducing requirements to both

memory size and bandwidth.In such case,textures are stored in

memory and transferred to GPU in a compressed form. Unpacking

only occurs inside GPU, usually between L1$ and L2$ caches.

Such approach also reduces power consumption, because overall

GPU↔VRAM traffic could be directly converted to power

consumption. This is especially important for mobile devices such

as notebooks, tablet PCs and smartphones.

Texture access pattern is highly random and texture access time is

a critical factor affecting the overall performance of the graphics

subsystem. Because of it, most of the texture compression

schemes provide fixed rate compression and decoders are

implemented in hardware. This, in turn, obviously means lossy

compression. Therefore, almost all known texture compressors are

block based: an image is divided into blocks of a small size and
each block gets compressed and accessed independently.

The ASTC format offers an unusual degree of flexibility and

supports both 2D and 3D textures, at both standard (LDR) and

high dynamic range (HDR), while providing better image quality

than most formats in common use today. It also provides a rich set

CPU

GPU

Audio

Process
or

Video

Hardware

DSP
Image

Signal
Processing

Fixed

Function

Acctr

Encode

Decode

Sh
ar

e
d

 M
em

o
ry

 C
o

h
er

e
n

cy
,

U
se

r
M

o
d

e
Q

u
e

u
e

s

84

of compression bit rates from eight bits per pixel down to less

than one bit per pixel in very fine steps. ASTC has fixed block
size of 128 bits and supports 2D tiles from 4x4 to 12x12 pixels.

The very basic idea is as following: interpolation weights and up

to four color endpoint pairs are stored in a compressed block, the

decoder picks one color pair for every pixel and blends colors

using interpolation weight to produce output color.Color and

weight data could be encoded using various modes. Moreover,

block layout and special bounded integer sequence encoding

(BISE) allows flexible allocation of bits between different types
of information. Still, decoding is rather efficient and fast.

However,that is not true for encoding. Achieving decent quality at

a reasonable speed is a non-trivial task, because of format

complexity. Currently there is only one ASTC encoder – ASTC

Evaluation Codec which is a part of Mali Texture Compression
Tool written by ARM. Our implementation is based on this codec.

Base algorithm tries to find the best colors and weights encoding

for every possible block mode. It stops searching once a

compression error for current block gets lower than the error limit.

For the performance reasons, heuristics and early exit conditions

are heavily used. There are predefined speed/quality settings

named veryfast, fast, medium, thorough and exhaustive, which

limits search space. Compression times for the test texture1 are

shown in Table 1.

Quality

Settings

Peak signal-to-noise

ratio (PSNR), dB

Compression time,

seconds

Veryfast 41.931500 0.8

Fast 44.712035 1.9

Medium 45.716011 12.2

Thorough 46.072663 47.1

Exhaustive 46.203190 109.3

Table 1: Compression times for different speed/quality settings

(Mali TCT 4.2, APU – AMD A10-7850K2)

The thorough and exhaustive settings are of a particular interest,

because high quality modes are most demanded in 3D content

development.

7. MAPPING ASTC TO HSA

As well as other block compression schemes;the ASTC could be

easily parallelized on a block level (which in fact is done in ASTC

Evaluation Codec). However, moving entire algorithm to a GPU

would be very inefficient, because of high threads divergence

caused by early exit condition heuristics and branches.

Nevertheless,some computation steps can be performed in
parallel.

So compression of a single block is consists of a sequence of

stages, where some stages could be effectively implemented on

GPU cores. Schematically it is shown on Fig. 3, where boxes

represent parallel steps and circles represent sequential steps of

compression of a single block.

1
 Sample texture turret_diffuse_map.png (512x512 pixels)

from the Mali TCT 4.2 was used in all tests.
2
 AMD APU A10-7850K – 4 CPU cores @3.7GHz, 8 GPU

cores @720Mhz

Figure 3: Compression stages for a single image block

By observing source code and profiling original codec, we have

chosen three candidates for GPU offloading, which was
implemented in OpenCL kernels:

 realign_weights()

 find_best_partitionings()

 compute_angular_endpoints()

Still, parallel parts of a single block compression process cannot

create reasonable load level for a single GPU core. Therefore,

image blocks could be compressed in batches: CPU thread

executes sequential stages for a batch of blocks and prepares data

for GPU. Schematically this approach is depicted on Fig. 4.

Figure 4: Compression stages for a batch compression

Our experiments show that a batch size of 512-1024 blocks

provides reasonable tradeoff between memory consumption and
better GPU utilization.

Offloading some work to GPU cores could increase overall
performance in two ways:

 Executing parallel stages on GPU core is often more

efficient in terms of time and power.

 CPU threads could process another batch while waiting

results from GPU.

However, traditional GPGPU approach with discrete CPU and
GPU devices faces following restrictions:

 Data should be transferred between CPU and GPU over

PCIe, which has much lower bandwidth than RAM or

video framebuffer. Coping time for small tasks is

comparable with execution time. Sparse access to large

buffers is also causes difficulties. It is possible to

directly access such buffers from GPU over PCIe

without copying data. However, all that host memory

should be prepinned, even if many pages will never be

used. It causes OS overhead and may lead to

unnecessary paging activity.

 High number of kernel invocations results in high driver
overhead.

In contrast, HSA platform lacks such restrictions by providing

features such as hardware scheduling, user-level command

queuing and coherent shared virtual memory. The last one is also
greatly simplifies acceleration of existing applications.

Another approach we have used to accelerate ASTC encoding is

JIT (just in time) compilation. Some compression parameters,

such as tile size and searching limits, are constant for a chosen

B1

B2

B3
А1 A2 A3 C1 C2 C3

B A C

85

image and quality settings. As OpenCL kernels are naturally

compiled at a runtime, we are able to replace such variables with

macro definitions and pass actual values at runtime. This allows

OpenCL compiler to make additional optimizations, reduce binary

size and register pressure. It also helps increasing kernel

occupancy level, which in turns allows better hiding memory

latency. Results for one of the implemented kernels are shown in

Table 2.

 Static compilation JIT compilation

Binary size 24124 bytes 7628 bytes

Scalar GPRs 76 50

Vector GPRs 65 36

Table 2: Comparing static and JIT compilation

8. RESULTS AND FUTURE WORK

As a proof of concept we have implemented HSA accelerated

ASTC encoding for LDR images without alpha channel.

Currently, HSA software stack remains in development state, so

some features are not yet available or optimized. Still the results
(Table 3) are rather promising: HSA provides up to 5x speedup.

Quality

Settings

Compression time in seconds

Speedup Original

codec

HSA accelerated

codec

Medium 12.2 3.4 3.59x

Thorough 47.1 10.6 4.44x

Exhaustive 109.3 21.3 5.13x

Table 3: Comparing compression times for original and

modified codecs

Note that original codec (Mali TCT 4.2) goes with 32bit binary.

Our implementation was compiled for x64 target and also benefits

from larger register file and SIMD instructions.

Currently CPU threads just wait while GPU executes kernels. It

results in overall CPU utilization of 60-90%. Therefore, there is a

lot of room for increasing performance even further by

implementing dynamic load balancing between CPU and GPU

cores. HSA profiling and instrumentation tool progress may give a

chance to useheterogeneous cores more efficiently providing
better load balance between GPU and CPU cores.

9. CONCLUSION

The current state of the art of GPU/DSP and other high-

performance computing is not flexible enough for many of

today’s computational problems.

HSAis a unified computing framework. It provides a single

address space accessible to both CPU and GPU (to avoid data

copying), user-space queuing (to minimize communication

overhead), and preemptive context switching (for better quality of

service) across all computing elements in the system. HSA unifies

CPUs and GPU/DSPs into a single system with common

computing concepts, allowing the developer to solve a greater

variety of complex problems more easily.There is a long way

ahead on migration of classic sequential programming algorithms

and tasks to HSA platforms to provide power/cost efficient
computing in several domains of human activity.

10. REFERENCES

[1] Heterogeneous System Architecture: A Technical Review,
Advanced Micro Devices, Rev. 1.0.

[2] http://developer.amd.com/resources/heterogeneous-
computing/

[3] http://malideveloper.arm.com/develop-for-mali/tools/astc-
evaluation-codec/

[4] Paltashev T.T., Perminov I.V., Texture compression

techniques, Scientific Visualization, National Research

Nuclear University "MEPhI". - 2014. - Т. 6, вып. 2014-1. -
С. 96-136. - ISSN 2079-3537

About the authors

TimourPaltashev is Senior Manager of Graphics IP Engineering at

Advanced Micro Devices and Professor at Northwestern

Polytechnic University, College of Engineering. His contact email
istimpal(at)mail.npu.edu.

IlyaPerminov is a PhD candidate at St. Petersburg National

Research University of Information Technologies, Mechanics and
Optics. His contact email is studentikispam(at)gmail.com

http://developer.amd.com/resources/heterogeneous-computing/
http://developer.amd.com/resources/heterogeneous-computing/
http://malideveloper.arm.com/develop-for-mali/tools/astc-evaluation-codec/
http://malideveloper.arm.com/develop-for-mali/tools/astc-evaluation-codec/
mailto:timpal@mail.npu.edu
mailto:studentikispam@gmail.com

