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Abstract 

The STAR on first part presents comprehensive overview of 

popular applications demands and their mapping to graphics and 

computing architectures of recent Graphics Processing Units 

(GPU) and Accelerated Processing Units (APU). Heterogeneous 

System Architecture (HSA)progress and merge of multicore 

CPUs with GPU cores in AMD product line is analyzed from 

potential user point of view. Semiconductor technology progress 

and power reduction challenges with their influence to graphics 
and compute architecture evolution have been considered as well. 

On the second part we present HSA architecture principles 

comprehensive overview and demonstrate the example of ASTC 

texture compression algorithm mapping to modern GPU/APU 

architecture and OpenCL-HSA software stack. The performance 

measurements show significant improvement with applied 
algorithms adjustments and modifications. 

Keywords: GPU, CPU, APU, graphics architecture, 

heterogeneous architecture, compute architecture, texture 
compression, ASTC. 

1. KEY INDUSTRY CHALLENGES FOR GRAPHICS 
ARCHITECTURE IN 2013-2017 

Graphics and computing architecture progress has several 

inflection points based on different industry branches, media 

content creation and massive entertainment industry merging with 

communication and computing domains. We may briefly define 

programming platforms and application programming interfaces 

(API) with direct influence to graphics and compute capabilities 

of modern hardware. Implementation of certain requested 

functionality hardly depends on semiconductor industry 

technology progress as well as on general computation technology 

advances. Power budget reduction for the same application 

execution is considered to be one of critical features of all new 

designs in all range from handheld mobile computing to 

supercomputing in data centers. Extremely high cost of 

semiconductor manufacturing in small size nodes 14nm and 

below requires new approaches on system architecture using 
multichip configurations. 

Very important influence also comes from independent software 

vendors (ISV) developing game engines and visual computing 

applications. Game and movie content creators always enquire for 

new visual effects of processing capabilities implemented in both 

software and hardware levels. Below is listed brief overview of 
platforms and technology development. 

Platforms and APIs:  

 OpenGL ES 3.0, OpenGL 4.4, Mantle (AMD), OpenGL 

(common) 

 Windows 8.1 with DirectX 11.2, Windows 2015 

“Threshold” with DirectX 12 and SVM lite support, 

Windows 2017 with DirectX 13 and full SVM support,  

 OpenCL 2.0 (2014-15), OpenCL 2.1 (2015-16) and 

OpenCL 3.0 (2016-17) 

Technology major trends: 

 Interposer technology including advanced 

semiconductor and systems packaging  with interposing 

on silicon (organic and glass as well) 

 Using HBM or High Bandwidth Memory in GPU, CPU 

and APU 

 Sequential transitions to 20 nm (2014), 14 nm (2016)  

and 10 nm (2017+) semiconductor manufacturing 

processes on foundries  

 Virtual page migration (2014-15), Low power HSA-

based DSP (2015) 

 Chiplets (tiny chips) combined on multichip module 

(MCM)   
 

Major CPU/GPU and SoC vendors develop their product roadmap 

responding to challenges in platforms and technology: 

AMD response on product line (public info limited by 2015): 

 Discrete GPUs: Bonaire and Hainan (28nm/2013), 

Hawaii (28nm/2013-2014), Tonga and 

Iceland(28nm/2014), Bermuda and Fiji (28nm/2015) 

 APUs: Kabini (28nm/2013), Kaveri and 

Mullins(28nm/2014), Carrizo (28nm/2015) and 
Amur/Nolan (20nm/2015). 

Intel’s response on product line (public info limited by 2016): 

 CPU-GPU SoC: Haswell and Silvermont(22nm/2013), 

Broadwell and Airmont (14nm/2014), Braswell and 

Goldmont (14nm/2015), Cannonlake (10nm/2016). 

 

Nvidia’s response on product line: 

 DGPU Kepler II(GK11x) (28nm/2013), Maxwell 

(28nm/2014) and project Denver with custom ARM 64-bit 

core (28nm/2014) 

 Mobile SoC and application processors: Logan (28nm/2013), 

Tegra K1 (28nm/2014) Tegra M1 (20nm/2015). 

2. SOFTWARE VENDORS VISIBLE CHALLENGES 

Graphics ISVs traditionally have their own set of requests and 

challenges which may enable new applications. We may consider 

following list which can be complemented any time by new ideas: 

1. Virtual Reality Holographic Rendering for head-mounted 

displays (HMD). 

2. Global illumination rendering in real time. 

3. Decoupled shading to process highly detailed scenes. 
4. Object+texture space combined memory hierarchy. 

VR for HMD generates a lot of attention, like product of 

Occulus Rift and Valve startup companies. They have 

significantly higher requirements for processing speed due to zero 

latency tolerance problem. Head movement demands smooth 

andsoftimage update, visible to eye and not causing movement 

artifacts. It requires high refresh rates and high resolution stereo 

image generation comparing to existing game consoles. In 

addition it requires image warp and post rendering to account for 

simulated lens optics. Next few years will be spent to find 

optimized solutions for HMD VR image generation. It may 

require significant computational power growth for GPU 
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considering high resolution frame rate doubled or tripled versus 
latest game consoles. 

Global illumination is one of favorite applications applied by 

researchers to GPU since they become more programmable in 

mid-2000s. Traditional local illumination shading and texturing 

algorithms implementation in popular game titles have been used 

as architecture optimization anchor while leaving serious 

capabilities for general computing which support global 

illumination models. We may group target applications and with 

their influence to architecture specifications. 

First group with dense stream compute pattern (more suitable for 

GPU cores): 

 3D graphics in games and engineering 

 High performance libraries for compute problems 

suitable for GPU acceleration 

Second group with sparse compute pattern (more suitable for 

CPU/ latency optimizing system) 

 Compiled OpenCL/C++ code for sparse problems  

 Ray tracers for global illumination 

 Other Khronosgroup platforms and based applications 

Third groupwith specialsignal and image processing pattern 

(more suitable for DSP cores + fixed function blocks) 

 Media processing 
 

Such application groups create different vectors on architecture 

trends and are challenging designers to create computing 

machines which may fulfill several requirements. Some of them 

may look quite opposite and generate several issues on 

architecture optimization. Modern complex Systems-on-Chip 

(SoC) with different types of processing cores could be potential 

platforms. But simply putting together on the piece of silicon 

multiple cores does not solve the problem of programmability; 

even it makes the problem worse. New architecture concept of 

Heterogeneous System Architecture (HSA) could solve potential 

problem of creating multipurpose and power/cost efficient 

computing machines. 

3. INTRODUCTION TO HETEROGENEOUS 
SYSTEM ARCHITECTURE (HSA) 

HSA is a new hardware architecture that integrates heterogeneous 

processing elements into a coherent processing environment. 

Coherent processing as a technique ensures that multiple 

processors see a consistent view of memory, even when values in 

memory may be updated independently by any of those 

processors. Memory coherency has been taken for granted in 

homogeneous multiprocessor and multi-core systems for decades, 

but allowing heterogeneous processors (CPUs, GPUs and DSPs) 

to maintain coherency in a shared memory environment is a 

revolutionary concept. Ensuring this coherency poses difficult 

architectural and implementation challenges, but delivers huge 

payoffs in terms of software development, performance and 

power. The ability for CPUs, DSPs and GPUs to work on data in 

coherent shared memory eliminates copy operations and saves 

both time and energy. The programs running on a CPU can hand 

work off to a GPU or DSP as easily as to other programs on the 

same CPU; they just provide pointers to the data in the memory 

shared by all three processors and update a few queues. Without 

HSA, CPU-resident programs must bundle up data to be 

processed and make input-output (I/O) requests to transfer that 

data via device drivers that coordinate with the GPU or DSP 

hardware. HSA allows developers to write software without 

paying much attention to the processor hardware available on the 

target system configuration with or without GPU, DSP, video 
hardware and other types of specialized compute accelerators. 

Fig.1 depicts generic HSA APU with multiple CPU cores and 
accelerated compute units (CU) which may include any type. 

Figure 1: Generic HSA Accelerated Processing Unit (APU) 

 

4. HSA OVERVIEW 

Essential HSA features include: 

 Full programming language support 

 User Mode Queueing  

 Heterogeneous Unified Memory Access (hUMA) 

 Pageable memory 

 Bidirectional coherency 

 Compute context switch and preemption 

Shared page table support. To simplify OS and user software, 

HSA allows a single set of page table entries to be shared between 

CPUs and CUs. This allows units of both types to access memory 

through the same virtual address. The system is further simplified 

in that the operating system only needs to manage one set of page 

tables. This enables Shared Virtual Memory (SVM) semantics 

between CPU and CU. 
Page faulting. Operating systems allow user processes to access 

more memory than is physically addressable by paging memory to 

and from disk. Early CU hardware only allowed access to pinned 

memory, meaning that the driver invoked an OS call to prevent 

the memory from being paged out. In addition, the OS and driver 

had to create and manage a separate virtual address space for the 

CU to use. HSA removes the burdens of pinned memory and 

separate virtual address management, by allowing compute units 

to page fault and to use the same large address space as the CPU. 
User-level command queuing. Time spent waiting for OS kernel 

services was often a major performance bottleneck in prior 

throughput computing systems. HSA drastically reduces the time 

to dispatch work to the CU by enabling a dispatch queue per 

application and by allowing user mode process to dispatch 

directly into those queues, requiring no OS kernel transitions or 

services. This makes the full performance of the platform 

available to the programmer, minimizing software driver 

overheads. 
Hardware scheduling.HSA provides a mechanism whereby the 

CU engine hardware can switch between application dispatch 

queues automatically, without requiring OS intervention on each 

switch. The OS scheduler is able to define every aspect of the 

switching sequence and still maintains control. Hardware 

scheduling is faster and consumes less power. 
Coherent memory regions. In traditional GPU devices, even 

when the CPU and GPU are using the same system memory 

region, the GPU uses a separate address space from the CPU, and 

the graphics driver must flush and invalidate GPU caches at 

required intervals in order for the CPU and GPU to share results. 
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HSA embraces a fully coherent shared memory model, with 

unified addressing. This provides programmers with the same 

coherent memory model that they enjoy on SMP CPU systems. 

This enables developers to write applications that closely couple 

CPU and GPU CU codes in popular design patterns like producer-

consumer. The coherent memory heap is the default heap on HSA 

and is always present. Implementations may also provide a non-

coherent heap for advance programmers to request when they 

know there is no sharing between processor types. 

The HSA platform is designed to support high-level parallel 

programming languages and models, including C++ AMP, C++, 

C#, OpenCL, OpenMP, Java and Python, as well as few others. 

HSA-aware tools generate program binaries that can execute on 

HSA-enabled systems supporting multiple instruction sets 

(typically, one for the CPU-type CU and one for the GPU/DSP 

type CU) and also can run on existing architectures without HSA 

support. 

Program binaries that can run on both CPUs and CUs contain 

CPU ISA (Instruction Set Architecture) for CPU unit and HSA 

Intermediate Language (HSAIL) for the CU. A finalizer converts 

HSAIL to CU ISA. The finalizer is typically lightweight and may 

run at install time, compile time, or program execution time, 
depending on choices made by the platform implementation. 

HSA architecture example platform is depicted on Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: HSA architecture example platform. 

5. HSA IMPLEMENTATION AND CONCEPTS  

Unified Programming Model. General computing on GPUs has 

progressed in recent years from graphics shader-based 

programming to more modern APIs like DirectCompute and 

OpenCL™. While this progression is definitely a step forward, the 

programmer still must explicitly copy data across address spaces, 
effectively treating the GPU as a remote processor. 

Task programming APIs like Microsoft’s ConcRT, Intel’s Thread 

Building Blocks, and Apple’s Grand Central Dispatch are recent 

innovations in parallel programming. They provide an easy to use 

task-based programming interface, but only on the CPU. 

Similarly, Thrust from NVIDIA provides a similar solution on the 
GPU. 

HSA moves the programming bar further, enabling solutions for 

task parallel and data parallel workloads as well as for sequential 

workloads. Programs are implemented in a single programming 

environment and executed on systems containing both CPUs and 
CUs. 

HSA provides a programming interface containing queue and 

notification functions. This interface allows devices to access 

load-balancing and device-scaling facilities provided by the 

higher-level task queuing library. The overall goal is to allow 

developers to leverage both CPU and CU devices by writing in 

task-parallel languages, like the ones they use today for multicore 

CPU systems. HSA’s goal is to enable existing task and data-

parallel languages and APIs and enable their natural evolution 

without requiring the programmer to learn a new HSA-specific 

programming language. The programmer is not tied to a single 

language, but rather has available a world of possibilities that can 

be leveraged from the ecosystem. 

Queuing. HSA devices communicate with one another using 

queues. Queues are an integral part of the HSA architecture. CPUs 

already send compute requests to each other in queues in popular 

task queuing run times like ConcRT and Threading Building 

Blocks. With HSA, both CPUs and CUs can queue tasks to each 
other and to themselves. 

The HSA runtime performs all queue allocation and destruction. 

Once an HSA queue is created, the programmer is free to dispatch 

tasks into the queue. If the programmer chooses to manage the 

queue directly, then they must pay attention to space available and 

other issues. Alternatively, the programmer can choose to use a 
library function to submit task dispatches. 

A queue is a physical memory area where a producer places a 

request for a consumer. Depending on the complexity of the HSA 

hardware, queues might be managed by any combination of 

software or hardware. Queue implementation internals are not 
exposed to the programmer. 

Hardware-managed queues have a significant performance 

advantage in the sense that an application running on a CPU can 

queue work to a CU directly, without the need for a system call. 

This allows for very low-latency communication between devices, 

opening up a new world of possibilities. With this, the CU device 
can be viewed as a peer device, or a co-processor. 

CPUs can also have queues. This allows any device to queue work 
for any other device. 

6. ASTC OVERVIEW 

As an example, we have modified ASTC compression algorithm 

to utilize HSA features. ASTC is a modern texture compression 

format developed by ARM and AMD. As the other texture 

compression formats, it aims on reducing requirements to both 

memory size and bandwidth.In such case,textures are stored in 

memory and transferred to GPU in a compressed form. Unpacking 

only occurs inside GPU, usually between L1$ and L2$ caches. 

Such approach also reduces power consumption, because overall 

GPU↔VRAM traffic could be directly converted to power 

consumption. This is especially important for mobile devices such 

as notebooks, tablet PCs and smartphones. 

Texture access pattern is highly random and texture access time is 

a critical factor affecting the overall performance of the graphics 

subsystem. Because of it, most of the texture compression 

schemes provide fixed rate compression and decoders are 

implemented in hardware. This, in turn, obviously means lossy 

compression. Therefore, almost all known texture compressors are 

block based: an image is divided into blocks of a small size and 
each block gets compressed and accessed independently. 

The ASTC format offers an unusual degree of flexibility and 

supports both 2D and 3D textures, at both standard (LDR) and 

high dynamic range (HDR), while providing better image quality 

than most formats in common use today. It also provides a rich set 
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of compression bit rates from eight bits per pixel down to less 

than one bit per pixel in very fine steps. ASTC has fixed block 
size of 128 bits and supports 2D tiles from 4x4 to 12x12 pixels. 

The very basic idea is as following: interpolation weights and up 

to four color endpoint pairs are stored in a compressed block, the 

decoder picks one color pair for every pixel and blends colors 

using interpolation weight to produce output color.Color and 

weight data could be encoded using various modes. Moreover, 

block layout and special bounded integer sequence encoding 

(BISE) allows flexible allocation of bits between different types 
of information. Still, decoding is rather efficient and fast.  

However,that is not true for encoding. Achieving decent quality at 

a reasonable speed is a non-trivial task, because of format 

complexity. Currently there is only one ASTC encoder – ASTC 

Evaluation Codec which is a part of Mali Texture Compression 
Tool written by ARM. Our implementation is based on this codec. 

Base algorithm tries to find the best colors and weights encoding 

for every possible block mode. It stops searching once a 

compression error for current block gets lower than the error limit. 

For the performance reasons, heuristics and early exit conditions 

are heavily used. There are predefined speed/quality settings 

named veryfast, fast, medium, thorough and exhaustive, which 

limits search space. Compression times for the test texture1 are 

shown in Table 1. 

Quality 

Settings 

Peak signal-to-noise 

ratio (PSNR), dB 

Compression time, 

seconds 

Veryfast 41.931500 0.8 

Fast 44.712035 1.9 

Medium 45.716011 12.2 

Thorough 46.072663 47.1 

Exhaustive 46.203190 109.3 

 

Table 1: Compression times for different speed/quality settings 

(Mali TCT 4.2, APU – AMD A10-7850K2) 

The thorough and exhaustive settings are of a particular interest, 

because high quality modes are most demanded in 3D content 

development. 

7. MAPPING ASTC TO HSA 

As well as other block compression schemes;the ASTC could be 

easily parallelized on a block level (which in fact is done in ASTC 

Evaluation Codec). However, moving entire algorithm to a GPU 

would be very inefficient, because of high threads divergence 

caused by early exit condition heuristics and branches. 

Nevertheless,some computation steps can be performed in 
parallel. 

So compression of a single block is consists of a sequence of 

stages, where some stages could be effectively implemented on 

GPU cores. Schematically it is shown on Fig. 3, where boxes 

represent parallel steps and circles represent sequential steps of  

compression of a single block. 

 

 

                                                                 
1
 Sample texture turret_diffuse_map.png (512x512 pixels) 

from the Mali TCT 4.2 was used in all tests. 
2
 AMD APU A10-7850K – 4 CPU cores @3.7GHz, 8 GPU 

cores @720Mhz 

 

 
Figure 3: Compression stages for a single image block 

 

By observing source code and profiling original codec, we have 

chosen three candidates for GPU offloading, which was 
implemented in OpenCL kernels: 

 realign_weights() 

 find_best_partitionings() 

 compute_angular_endpoints() 

Still, parallel parts of a single block compression process cannot 

create reasonable load level for a single GPU core. Therefore, 

image blocks could be compressed in batches: CPU thread 

executes sequential stages for a batch of blocks and prepares data 

for GPU. Schematically this approach is depicted on Fig. 4. 

 

 

Figure 4: Compression stages for a batch compression 

 

Our experiments show that a batch size of 512-1024 blocks 

provides reasonable tradeoff between memory consumption and 
better GPU utilization. 

Offloading some work to GPU cores could increase overall 
performance in two ways: 

 Executing parallel stages on GPU core is often more 

efficient in terms of time and power. 

 CPU threads could process another batch while waiting 

results from GPU. 

However, traditional GPGPU approach with discrete CPU and 
GPU devices faces following restrictions: 

 Data should be transferred between CPU and GPU over 

PCIe, which has much lower bandwidth than RAM or 

video framebuffer. Coping time for small tasks is 

comparable with execution time. Sparse access to large 

buffers is also causes difficulties. It is possible to 

directly access such buffers from GPU over PCIe 

without copying data. However, all that host memory 

should be prepinned, even if many pages will never be 

used. It causes OS overhead and may lead to 

unnecessary paging activity. 

 High number of kernel invocations results in high driver 
overhead. 

In contrast, HSA platform lacks such restrictions by providing 

features such as hardware scheduling, user-level command 

queuing and coherent shared virtual memory. The last one is also 
greatly simplifies acceleration of existing applications.  

Another approach we have used to accelerate ASTC encoding is 

JIT (just in time) compilation. Some compression parameters, 

such as tile size and searching limits, are constant for a chosen 
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image and quality settings. As OpenCL kernels are naturally 

compiled at a runtime, we are able to replace such variables with 

macro definitions and pass actual values at runtime. This allows 

OpenCL compiler to make additional optimizations, reduce binary 

size and register pressure. It also helps increasing kernel 

occupancy level, which in turns allows better hiding memory 

latency. Results for one of the implemented kernels are shown in 

Table 2. 

 Static compilation JIT compilation 

Binary size 24124 bytes 7628 bytes 

Scalar GPRs 76 50 

Vector GPRs 65 36 

Table 2: Comparing static and JIT compilation 

 

8. RESULTS AND FUTURE WORK 

As a proof of concept we have implemented HSA accelerated 

ASTC encoding for LDR images without alpha channel. 

Currently, HSA software stack remains in development state, so 

some features are not yet available or optimized. Still the results 
(Table 3) are rather promising: HSA provides up to 5x speedup. 

Quality 

Settings 

Compression time in seconds 

Speedup Original 

codec 

HSA accelerated 

codec 

Medium 12.2 3.4 3.59x 

Thorough 47.1 10.6 4.44x 

Exhaustive 109.3 21.3 5.13x 

Table 3: Comparing compression times for original and 

modified codecs 

Note that original codec (Mali TCT 4.2) goes with 32bit binary. 

Our implementation was compiled for x64 target and also benefits 

from larger register file and SIMD instructions. 

Currently CPU threads just wait while GPU executes kernels. It 

results in overall CPU utilization of 60-90%. Therefore, there is a 

lot of room for increasing performance even further by 

implementing dynamic load balancing between CPU and GPU 

cores. HSA profiling and instrumentation tool progress may give a 

chance to useheterogeneous cores more efficiently providing 
better load balance between GPU and CPU cores. 

9. CONCLUSION 

The current state of the art of GPU/DSP and other high-

performance computing is not flexible enough for many of 

today’s computational problems. 

HSAis a unified computing framework. It provides a single 

address space accessible to both CPU and GPU (to avoid data 

copying), user-space queuing (to minimize communication 

overhead), and preemptive context switching (for better quality of 

service) across all computing elements in the system. HSA unifies 

CPUs and GPU/DSPs into a single system with common 

computing concepts, allowing the developer to solve a greater 

variety of complex problems more easily.There is a long way 

ahead on migration of classic sequential programming algorithms 

and tasks to HSA platforms to provide power/cost efficient 
computing in several domains of human activity. 
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